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Abstract

Training large-scale unbalanced data is the central topic

in face recognition. In the past two years, face recognition

has achieved remarkable improvements due to the introduc-

tion of margin based Softmax loss. However, these methods

have an implicit assumption that all the classes possess suf-

ficient samples to describe its distribution, so that a man-

ually set margin is enough to equally squeeze each intra-

class variations. However, real face datasets are highly un-

balanced, which means the classes have tremendously dif-

ferent numbers of samples. In this paper, we argue that the

margin should be adapted to different classes. We propose

the Adaptive Margin Softmax to adjust the margins for dif-

ferent classes adaptively. In addition to the unbalance chal-

lenge, face data always consists of large-scale classes and

samples. Smartly selecting valuable classes and samples

to participate in the training makes the training more ef-

fective and efficient. To this end, we also make the sam-

pling process adaptive in two folds: Firstly, we propose the

Hard Prototype Mining to adaptively select a small number

of hard classes to participate in classification. Secondly,

for data sampling, we introduce the Adaptive Data Sam-

pling to find valuable samples for training adaptively. We

combine these three parts together as AdaptiveFace. Ex-

tensive analysis and experiments on LFW, LFW BLUFR

and MegaFace show that our method performs better than

state-of-the-art methods using the same network architec-

ture and training dataset. Code is available at https:

//github.com/haoliu1994/AdaptiveFace.

1. Introduction

Face recognition, as one of the most common computer

vision tasks, has made dramatic improvements in recent

years [8, 3, 24, 36, 44, 33, 23, 18, 45, 40, 19, 5, 2]. It is

worth noting that in the last few years, most approaches
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focus on loss functions which aim to reduce intra-class

variations and enlarge inter-class variations. As one of

milestone contributions, the margin based Softmax [17, 16,

34, 32, 4] explicitly adds a margin to each identity to im-

prove feature discrimination. For example, L-Softmax [17]

and SphereFace [16] add multiplicative angular margin to

squeeze each class. CosFace [34, 32] and ArcFace [4]

achieve the state-of-the-art performance by adding addi-

tive cosine margin and angular margin respectively for eas-

ier optimization. Nonetheless, these methods have an im-

plicit hypothesis that all the classes have sufficient samples

to describe their distributions, so that a constant margin is

enough to equally squeeze each intra-class variations. How-

ever, public face datasets are highly unbalanced, which indi-

cates that they always have tremendously different numbers

of samples as shown in Fig 1. For those rich classes with

sufficient samples, the space spanned by existing training

samples can represent the real distribution. However, for

those poor classes with scarce samples, the space spanned

by the existing training samples may be only a small part of

the real distribution. Therefore, a uniform margin is not per-

fect to constrain classes with different sample distributions.

We prefer a larger margin to strongly squeeze the intra-

class variations of those underrepresented classes to im-

prove generalization. In this paper, we propose a novel loss

function, Adaptive Margin Softmax Loss (AdaM-Softmax),

to adaptively find the appropriate margins for different kind

of classes. Specifically, we make the margin m particular

and learnable for each class and directly train the CNN to

find the adaptive margins. Formally, we define the margin

of each class mi such that the decision boundary is given

by cos θ1 −m1 = cos θ2, where θi is the angle between the

feature and weight of class i. In the experiments, we show

that AdaM-Softmax is superior to the baseline methods.

Besides, the large-scale face data always contains hun-

dreds of thousands of classes and millions of samples,

where only a small fraction of them can contribute to the

discriminative training. How to select valuable classes and

samples for training is another important topic but attracts
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Figure 1. The distribution of photos per identity in CASIA-WebFace, MS-Celeb-1M and MegaFace datasets. We can see that the distribu-

tions of the three datasets are extremely unbalanced.

little attention in Softmax loss. In this paper, we also make

the sampling process adaptive. The sampling refers to the

prototype selection in Softmax layer and the data sampling

in the data layer. Firstly, in deep metric learning, hard exam-

ple mining is an important part to improve the training effi-

ciency and performance of the model. Zhu et al. [47] show

that both verification loss and classification loss follow the

same pair matching and weighting framework. The only

differences lie in the pairing candidates (within features vs.

features with prototypes) and the weighting methods (hard

weight vs. soft weight). Therefore, in this paper, we try to

apply the hard example mining strategy in the Softmax loss.

Specifically, we propose the Hard Prototype Mining (HPM)

to adaptively select a small number of hard classes to partic-

ipate in the classification, making the optimization concen-

trate on hard classes. Note that we regard the weight vector

of each class as its prototype in this paper. Secondly, learn-

ing from large-scale data is crucial for current face recog-

nition task, so that training efficiency becomes more and

more important due to the limitation of time and computing

devices. Inspired by mini-batch level hard example min-

ing, we propose the Adaptive Data Sampling (ADS), which

finds the valuable samples for network training through a

feedback channel from the classification layer to the data

layer. Based on the three components, we call the proposed

face recognition framework AdaptiveFace, as shown in Fig-

ure 2.

In summary, we aim to make the face recognition frame-

work more flexible to handle the large scale and unbalanced

data. Our major contributions are as follows:

(1) We introduce the adaptive margin to make the model

learn the special margin for each class to adaptively squeeze

its intra-class variations.

(2) We propose the Hard Prototype Mining to make the

network training concentrate on hard classes by adaptively

mining a small number of hard prototypes during classifica-

tion training.

(3) We establish a feedback channel from the classifica-

tion layer to the data layer to find the valuable samples for

network training.

Experiments on LFW, LFW BLUFR and MegaFace

show that our method effectively improves the recognition

accuracy and achieves state-of-the-art performance.

2. Related Works

In this section, we review the deep learning based face

recognition and discuss two related problems: (1) Loss

functions and (2) Hard example mining.

Loss Functions. Loss function plays an important role

for face recognition. We will introduce the loss function

from two aspects. The first is the verification loss function.

Contrastive loss [3, 6, 27] optimizes pairwise Euclidean dis-

tance in feature space. Triplet loss [24, 9, 35] making up

triplets to separate the positive pair from the negative pair

by a distance margin. The second is the classification loss

function. The most popular loss in this scheme is the Soft-

max loss [28, 30, 31]. Based on that, the center loss [36]

proposes to learn the class-specific feature centers to make

features more compact in the embedding space. The L2-

softmax [23] adds a L2-constraint on features to promote

the under-represented classes. The NormFace [33] normal-

izes both features and prototypes to make the training and

testing phases closer. Recently, enhancing cosine and angu-

lar margins between different classes is found to be effec-

tive in improving feature discrimination. The large-margin

Softmax [17] and A-Softmax [16] add multiplicative angu-

lar margin to each identity to improve feature discrimina-

tion. CosFace [34] and AM-Softmax [32] add additive co-

sine margin for better optimization. ArcFace [4] moves the

additive cosine margin into angular space to get clear geo-

metrical interpretation and better performance on a series of

face recognition benchmarks.

Hard Example Mining. Hard example mining is an im-

portant part for deep metric learning to improve the train-

ing efficiency and performance of the model. The way to

find hard examples is usually to use online hard example

mining (OHEM) [10, 39]. However, in practice, because of

amounts of noise in large scale data, it is better to use online

semi-hard example mining [24, 21, 22], in which example

pairs are chosen at random from the “hard enough” pairs in
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Figure 2. Overview of our AdaptiveFace. It consists of ADS, HPM and AdaM-Softmax.

the mini-batch. Also, not only hard pairs contain useful in-

formation [46], utilization of different levels of “hardness”

has also proved to be beneficial [37, 41, 7]. All these meth-

ods improve hard sample mining, and there are others for

mining hard classes. N-pair loss [26] uses “hard class min-

ing” to find pairs of classes to generate mini-batches. Dop-

pelganger Mining [25] maintains a list with the most similar

identities for each identity to generate better mini-batches.

3. The Proposed Approach

In this section, we detail our methodology. In Sec-

tion 3.1, we discuss why an identical margin cannot work

well for classes with different numbers of samples and in-

troduce our Adaptive Margin Softmax to find the special

and appropriate margin for each class in an end-to-end way.

In Section 3.2, we then propose the hard prototype mining

to smartly select hard classes in the Softmax loss. Finally,

we introduce a feedback channel to find the valuable sam-

ples for data sampling in Section 3.3.

3.1. Adaptive Margin Softmax

3.1.1 Intuition and Motivation

The recent works on margin based Softmax loss [17, 16,

34, 32, 4] have achieved significant improvements, where a

manually tuned m is set for all the classes to squeeze the

intra-class variations. There is an implicit assumption in

these methods that the sample distributions of all the classes

are identical, so that a manually set margin is enough to con-

strain all the classes. However, there is serious sample im-

balance in existing face training data, as shown in Figure 1.

For those classes with rich samples and large intra-class

variations, the space spanned by existing training samples

can represent the real distribution of all their samples, but

for those poor classes with scarce samples and small intra-

class variations, the space spanned by existing samples may

be only a small part of the real distribution of this class.

Note that, those classes with continuous frame of a track-

let are still considered as poor classes, since these frames

provide few intra-class information. When a uniform mar-

gin is set for all the classes, the feature distributions of poor

classes may not be as compact as that of rich classes, since

the real spanned space of poor classes may be larger than

the observed space, resulting in poor generalization.

We further visualize the phenomenon through a binary

classification task as shown in Figure 3 (a). The blue area

indicates the feature space of a poor class C1 with scarce

samples and small intra-class variations. The translucent

blue area indicates the underlying real feature space of C1,

which cannot be observed due to the scarce samples. The

red area indicates the feature space of class C2 with rich

samples and large intra-class variations. Since there are

rich samples in C2, we think observed feature space is al-

most the same as the underlying real feature space, so the

translucent red area is the same as the red one. It can be

seen that the CosFace loss cannot well compact the features

of C1 since it cannot see the real boundary samples. As

a result, the underlying real feature space of C1 can’t be

as compact as that of C2. To address this issue, we pro-

pose the Adaptive Margin Softmax Loss (AdaM-Softmax),

which improves the fixed margin m to a learnable and class-

related parameter.

3.1.2 Adaptive Margin Softmax Loss

Let’s start with the most widely used Softmax loss. The

Softmax loss separates features from different classes by

maximizing posterior probability of the ground-truth class.

Given an input feature vector xj with its corresponding la-
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Figure 3. Geometrical interpretation of AdaM-Softmax from fea-

ture perspective. Blue area represents the feature space and

translucent blue area is the underlying real feature space of the

poor class C1, red area represents the feature space of the rich class

C2. (a) CosFace allocates an identical margin for both classes,

so that the poor class cannot be well compacted since the real

boundary samples are not observed. (b) AdaM-Softmax allocates

a larger margin to further compact the poor class, which implicitly

optimize the underlying real space.

bel y(j), the Softmax loss without bias can be formulated

as:

Lsoft = −
1

M

M
∑

j=1

log pij = −
1

M

M
∑

j=1

log
( e

w
T

y(j)xj

∑N

i=1 e
w

T
i
xj

)

(1)

where pij denotes the posterior probability of xj being cor-

rectly classified into class y(j), M is the batch size, N is

the number of classes and wi denotes the prototype of class

i. Applying L2 normalization on wi and xj to optimize the

feature on a sphere, the feature distances can be formulated

as feature angulars as follows:

w
T
i xj = ‖wi‖‖xj‖ cos θij = cos θij (2)

where θij is the angle between wi and xj . Based on this

formulation, some methods introduce a margin to improve

the intra-class compactness, such as A-Softmax [16], Cos-

Face [34, 32] and ArcFace [4]. Take CosFace as an exam-

ple:

Llmc = −
1

M

M∑

j=1

log
e
s(cos(θ

y(j)j
)−m)

e
s(cos(θ

y(j)j
)−m)

+
∑N

i=1,i 6=y(j) e
s cos(θij)

(3)

where s is the scale factor. The margin m in CosFace are

usually manually set and kept constant along the training

process. In order to deal with the problem described in the

section 3.1.1, we aim to improve the margin to a learnable

and class-related parameter. The Equ. 3 can be modified as:

Lad=−
1

M

M∑

j=1

log
e
s(cos(θ

y(j)j
)−m

y(j) )

e
s(cos(θ

y(j)j
)−m

y(j) )+
∑N

i=1,i 6=y(j) e
s cos(θij)

(4)

where the my(j) is the margin corresponding to class y(j).

Intuitively, we prefer larger m to reduce the intra-class vari-

ations. In this work, we constrain margins in the database

view:

Lm = −
1

N

N
∑

i=1

mi (5)

which is the average of margins of all the classes. Com-

bining the two parts is our Adaptive Margin Softmax Loss

(AdaM-Softmax):

LAdaM = Lad + λ ∗ Lm (6)

The λ controls the strength of the margin constraint Lm,

which is discussed in the experiments. Note that without

Lm, there exists a trivial solution that mi = 0. The pro-

posed adaptive margin can be applied in any margin based

Softmax loss such as ArcFace, just by changing the cosine

margin to the angular margin.

3.1.3 Comparison with Other Loss Functions

To better understand the difference between our method

and other margin based Softmax loss, we give the decision

boundaries under the binary classification case in Table 1

and Figure 4. The main difference among these methods is

our margin is learnable and class-related. As can be seen

in Figure 4, although CosFace and ArcFace give a clear

margin between the two classes, for the poor class C1, its

real distribution may be larger than the observed distribu-

tion, so that the real margin is getting smaller, leading to

poor generalization. Differently, for AdaM-Softmax, it can

learn a larger m1 for C1 through the parameter update dur-

ing network training, making the observed features of C1

more compact and implicitly pushing the real boundary of

C1 away from C2.

In addition, to intuitively visualize the effect of AdaM-

Softmax, we designed a toy experiment to demonstrate

the feature distributions trained by different loss functions.

We select face images from 8 identities in MS-Celeb-1M

to train several 10-layer ResNet models which output 3-

dimentional features. Among them, class 0 (red) contains

the most (more than 400) samples, class 1, 2 (orange, gold)

contain rich (about 200) samples, class 3∼7 (five cold col-

ors) contain poor (about 50) samples (this ratio roughly sim-

ulates the sample number distribution of MS-Celeb-1M).

We normalized the obtained 3-dimensional features and plot

them on the sphere. The participated losses are Softmax

loss, CosFace, and the proposed AdaM-Softmax with dif-

ferent λ. As shown in Figure 5, we can observe that Soft-

max loss prefers rich classes (such as class 0) and allocates

large spaces for them, leading to bad decision boundaries.

CosFace reduces intra-class variations and allocates equal
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space for each class, without considering its sample distri-

bution. For example, light blue points and red points occupy

almost the same space area. The AdaM-Softmax focuses on

optimizing the poor classes (cold colors) to be more com-

pact. By comparing CosFace and AdaM-Softmax (λ = 5),

we can see that the area occupied by the rich class 0 (red

points) is almost the same, while for poor classes (blue, light

blue and purple), the features of our method are more com-

pact. Furthermore, by increasing the λ, the features of those

samples of poor classes are almost clustered at one point.

Loss Functions Decision Boundaries

Softmax (w1 −w2)x+ b1 − b2 = 0
W-Norm Softmax ‖x‖ (cos θ1 − cos θ2) = 0
SphereFace [16] ‖x‖ (cosmθ1 − cos θ2) = 0

F-Norm SphereFace s(cosmθ1 − cos θ2) = 0
CosFace [32, 34] s(cos θ1 −m− cos θ2) = 0

ArcFace [4] s(cos(θ1 +m)− cos θ2) = 0
AdaM-Softmax(CosFace) s(cos θ1 −m1 − cos θ2) = 0
AdaM-Softmax(ArcFace) s(cos(θ1 +m1)− cos θ2) = 0

Table 1. Decision boundaries for class 1 under binary classification

case. Note that, θi is the angle between wi and x, s is the scale

factor, m is the constant margin, and m1 is the margin of class C1.

Figure 4. The comparison of decision margin of different loss

functions for two classes. C1 is a poor class and C2 is a rich

class. The black dashed line represents decision boundary of the

observed samples in the database, the blue dashed line represents

underlying real decision boundary of all the possible samples of

C1, and the gray areas are decision margins.

3.2. Hard Prototype Mining

Sampling has been extensively researched in verification

losses (contrastive [27], triplet [24]), which is the hard ex-

ample mining strategy [24, 21, 10]. The hard example min-

ing aims to mine the most valuable pairs or triplets. In or-

der to apply the idea of hard example mining in Softmax

loss to improve efficiency and performance, we propose the

Hard Prototype Mining (HPM) to select the classes that are

most similar to the samples in the mini-batch in each it-

eration. The HPM is improved from the prototype selec-

tion strategy in [47]. Specifically, we consider the weight

wi of each class as its prototype. We build an ANN graph

for prototypes of all classes and find the k classes that are

most similar to each class and put them into their respective

queues. We call these queues dominant queues indicated

by Qi. When each iteration starts, we select the prototypes

in the dominant queues corresponding to the samples in the

mini-batch to construct the weight matrix W of this itera-

tion. After forward propagation, we update the dominant

queues by the scores calculated by inner products in the

classification layer. Firstly, for a feature xj , if its high-

est activated class cp is its corresponding class y(j), there

is no need to update. Secondly, if cp 6= y(j), we find all

the classes with scores greater than cos(θy(j)j) by sorting

to update the queue. Finally, different from [47], we set

a hyper-parameter h to control the size of dominant queue

of each class. For each class in the queue, if its similarity

to the queue owner is greater than h, it will remain in the

queue, otherwise it will be popped up. With h, we can con-

trol the similarity of the selected prototypes, and gradually

increase the difficulty of the training by adjusting h. The

whole HPM increases little computation cost.

3.3. Adaptive Data Sampling

When the network has roughly converged, most of the

samples in the dataset have been well classified and are

difficult to contribute to the network training. To improve

training effectiveness and efficiency, we build a feedback

channel from the classification layer to the data layer to

adaptively find valuable samples to form mini-batches, and

we call it Adaptive Data Sampling (ADS). Specifically, we

assign sampling probability to each sample. During train-

ing, when the sample is correctly classified in this iteration,

we pass the signal to the data layer and reduce its sampling

probability. Otherwise, we increase its sampling probabil-

ity, so that the samples which are correctly classified fre-

quently will be gradually ignored as the training progresses.

We also set a minimum sampling probability smin, in case

those simple samples are never sampled.

Besides, since large-scale face data inevitably has much

noise data [42], as training proceeds, the noisy samples

will be continuously misclassified and have large sampling

probability. In order to alleviate the impact of noisy data,

we add feedback for noisy samples. For each sample in

mini-batch, if the score between its feature and its corre-

sponding prototype is lower than a threshold, we will pass

the message to the data layer to drastically reduce the sam-

pling probability of this sample.

4. Experiments

4.1. Experimental Settings

Preprocessing We detect faces by the FaceBox [43]

detector and localize 5 landmarks (two eyes, nose tip and

two mouth corners) by a simple 6-layer CNN. All the faces

are normalized by similarity transformation and cropped to

120× 120 RGB images.

CNN Architecture PyTorch [1] is used to implement
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Figure 5. Feature distribution visualization of several loss functions. For better viewing, we show two perspectives of the same sphere.

The first line focuses on the sample-rich classes (red, orange and gold), and the second line highlights those classes that are lacking in the

sample (cold colors).

our proposed methods. All CNN models in the experi-

ments follow the same architecture in this paper, which is

a 50-layer residual network [8] same as LResNet50A-IR

in [4]. It has four residual blocks and finally gets a 512-

dimensional feature by average pooling. The networks are

trained on TITANX GPUs and the batch size is set to fill all

the GPU memory.

Training Data For all models in this paper, we trained

them on the MS-Celeb-1M dataset [5], which is one of the

largest wild dataset containing 98, 685 celebrities and 10
million images. Since there are much noise, the data is

cleaned by the list of [38]. There are 79, 077 identities and

5 million images remaining. These face images are hori-

zontally flipped for data augmentation.

Evaluation Setup For each image, we extract fea-

tures only from the original image as the final representa-

tion. We didn’t extract features from both the original image

and the flipped one and concatenate them as the final rep-

resentation. The score is measured by the cosine distance

of two features. Finally, face verification and identification

are conducted by thresholding and ranking the scores. We

evaluate our models on LFW [12], LFW BLUFR [14] and

MegaFace [13].

4.2. Overall Benchmark Comparisons

4.2.1 Experiments on MegaFace

MegaFace [13] is one of the most challenging testing bench-

mark for large-scale face identification and verification,

which aims to evaluate the performance of face recogni-

tion models at the million scale of distractors. The gallery

set of MegaFace is a subset of Flickr photos, composed of

more than one million face images. The probe sets are two

existing databases: FaceScrub [20] and FGNet. The Face-

Scrub dataset contains 106,863 face images of 530 celebri-

ties. The FGNet dataset is mainly used for testing age in-

variant face recognition, with 1002 face images from 82

persons. In this study, we use the FaceScrub dataset as

the probe set to evaluate the performance of our approach

on MegaFace Challenge 1. However, there are some noisy

images from FaceScrub and MegaFace, hence we use the

noises list proposed by ArcFace [4] to clean it. For fair

comparison, we implement the Softmax, A-Softmax, Cos-

Face, ArcFace and our AdaptiveFace with the same 50-layer

CNN. Table 2 shows the results of our models trained on

the protocol of MegaFace large. The proposed Adaptive-

Face obtains the best performance on both identification

and verification tasks, compared with related baseline meth-

ods including Softmax, SphereFace, CosFace and ArcFace.

Comparing with CosFace, AdaptiveFace improves the MF1

Rank1 from 93.942% to 95.023% and boost the MF1 ver-

ification performance from 94.115% to 95.608%, demon-

strating the effectiveness of our method.

4.2.2 Experiments on LFW and LFW BLUFR

LFW [12] is a common face verification testing dataset in

unconstrained conditions. It includes 13,233 face images

from 5749 identities collected from the website with large

variations in pose, expression and illumination. We follow

the standard protocol of unrestricted with labeled outside

data [11] to evaluate our model, and report the result on the

6,000 pair testing images from LFW. As shown in Table 3,

AdaptiveFace improves the performance from 99.53% to

99.62% on LFW. Considering that LFW has been well

solved, we further evaluate our method on the more chal-

lenging LFW BLUFR protocol [14], which focuses on low

FARs. We report the result in Table 4. As can be seen that

our method is superior to all current state-of-the-art meth-

ods.
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Method Protocol MF1 Rank1 MF1 Veri.

Beijing FaceAll Norm 1600 Large 64.80 67.11

Google - FaceNet v8[24] Large 70.49 86.47

NTechLAB - facenx large Large 73.30 85.08

SIATMMLAB TencentVision Large 74.20 87.27

DeepSense V2 Large 81.29 95.99

YouTu Lab Large 83.29 91.34

Vocord - deepVo V3 Large 91.76 94.96

CosFace[34] Large 82.72 96.65

Softmax Large 71.366 73.048

SphereFace[16] Large 92.241 93.423

CosFace[34] Large 93.942 94.115

ArcFace[4] Large 94.637 94.850

AdaptiveFace Large 95.023 95.608

Table 2. Face identification and verification evaluation on MF1.

“Rank 1” refers to rank-1 face identification accuracy and “Veri.”

refers to face verification TAR under 10−6 FAR.

Method Training Data #Models LFW

Deep Face[30] 4M 3 97.35

FaceNet[24] 200M 1 99.63

DeepFR [22] 2.6M 1 98.95

DeepID2+[29] 300K 25 99.47

Center Face[36] 0.7M 1 99.28

Baidu[15] 1.3M 1 99.13

SphereFace[16] 0.49M 1 99.42

CosFace[34] 5M* 1 99.73

Softmax 5M 1 98.83

SphereFace[16] 5M 1 99.57

CosFace[34] 5M 1 99.53

ArcFace[4] 5M 1 99.57

AdaptiveFace 5M 1 99.62

Table 3. Face verification (%) on the LFW datasets. “#Models”

indicates the number of models that have been used in the method

for evaluation. “*” indicates although the dataset of CosFace used

also contains 5M images, it is composed of several public datasets

and a private face dataset, containing about more than 90K identi-

ties, which is different with the dataset we used.

Method
VR@FAR

=0.001%

VR@FAR

=0.01%
DIR@FAR=1%

Softmax 83.41 93.55 80.16

SphereFace[16] 97.18 99.12 96.72

CosFace[34] 98.27 99.35 97.76

ArcFace[4] 98.48 99.47 98.02

AdaptiveFace 98.89 99.53 98.19

Table 4. The performance (%) on LFW BLUFR protocol.

4.3. Ablation Study

To demonstrate the effectiveness of three components in

our framework, we run a number of ablations to analyze the

improvements from AdaM-Softmax, Hard Prototype Min-

ing and Adaptive Data Sampling, respectively. The baseline

is CosFace when none of them is adopted. From Table 5, we

can see that improvement from AdaM-Softmax is most ob-

vious (from 94.115% to 95.032% in MF1 Veri.). ADS and

HPM can also improve performance when combined with

AdaM-Softmax from 94.373% to 95.023% in MF1 Rank1.

When the three parts are combined, AdaptiveFace has a sig-

nificant improvement over CosFace in all the evaluations.

Figure 6. The margin distributions with different λ. The larger λ,

the larger the mean of the distribution.

Figure 7. The average sample number of corresponding classes in

different m and with different λ. The larger margin is, the smaller

the number of samples of the corresponding class.

4.4. Exploratory Experiments

Effect of λ in Adaptive Margin Softmax Loss. Adap-

tive Margin Softmax Loss consists of two parts, classifica-

tion loss Lad and margin average loss Lm. The second part

plays an important role to prevent mi from getting smaller

and smaller during training. In this part, we conduct an ex-

periment to explore its impact. By varying λ from 0 to 150,

we used MS-Celeb-1M to train our model and validate it

on LFW, LFW BLUFR and MegaFace. The initial value of
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ADS HPM AdM-Soft
BLUFR

VR@FAR=0.01%

BLUFR

VR@FAR=0.001%

MF1

Rank 1

MF1

Veri.

- - - 99.35 98.27 93.942 94.115

X - - 99.39 98.44 94.068 94.539

- X - 99.39 98.47 94.049 94.789

- - X 99.47 98.53 94.373 95.032

X X X 99.53 98.89 95.023 95.608

Table 5. Ablation study on LFW BLUFR and MegaFace. ADS indicates the Adaptive Data Sampling. HPM indicates the Hard Prototype

Mining. AdM-Soft indicates the Adaptive Margin Softmax.

λ LFW
BLUFR

VR@FAR=0.001%

MF1

Rank 1

MF1

Veri.

CosFace[34] 99.53 98.27 93.942 94.115

0 99.45 98.29 93.138 93.348

20 99.48 98.40 94.074 93.921

50 99.53 98.53 94.373 95.032

70 99.53 98.61 94.590 94.687

100 99.58 98.47 94.629 94.641

150 99.48 98.55 94.613 94.250

Table 6. Performance (%) of Adaptive Margin Softmax with dif-

ferent λ on LFW, BLUFR and MegaFace.

m for all classes is 0.4. As shown in Table 6, we can see

that the performances on LFW and MegaFace Rank1 are

improved with the increasing of λ, and get saturated when

λ = 100. While for verification in BLUFR and MegaFace,

the performance is first increased, reaching the highest at

λ = 50 or 70, then slightly decreasing. To further investi-

gate the margins of each class under different λs, we plot

the distribution of m at λ = 20, 50 and 100 in Figure 6.

It can be seen that the distributions of m under different

λs have an approximate Gaussian distribution with similar

standard deviation, except that the mean of the distribution

is increased by larger λ. In Figure 7, we show the aver-

age sample number of classes corresponding to the learned

margin m. It can be found that as the number of samples

decreases, the value of m is increasing, which validates that

our AdaM-Softmax can adaptively allocate large margins to

poor classes and allocate small margins to rich classes. It is

obvious that the network can adaptively learn the margin of

each class based on the sample distribution to handle the

unbalanced data.

Effect of threshold h in Hard Prototype Mining. To

explore the effect of similarity threshold h in our Hard Pro-

totype Mining (HPM) approach, we train models with dif-

ferent h from small to large and compare their performance

on LFW and LFW BLUFR protocol. The loss function we

used in this experiment is the CosFace. Table 7 shows the

results and the number of prototypes selected with different

h, where h = 0 means we do not use HPM, i.e. training

directly using CosFace. We can see that the threshold h

can reduce the number of prototypes selected in each iter-

ation and improve the final performance. Note that when

h = 0.23, the selected prototypes are insufficient and too

h
Number of

Prototypes
LFW

BLUFR

VR@FAR=0.01%

BLUFR

VR@FAR=0.001%

0 79,077 99.53 99.35 98.27

0.1 20,000 99.57 99.38 98.33

0.15 10,000 99.62 99.42 98.37

0.2 5,000 99.52 99.39 98.47

0.23 2,000 99.50 99.19 97.72

Table 7. Performance (%) of HPM with different threshold h and

the number of prototypes selected by different h.

difficult, leading to degraded performance.

5. Conclusion

In this paper, we proposed a novel approach Adaptive-

Face for face recognition, which consists of three compo-

nents. The first is the AdaM-Softmax, which introduces the

adaptive margin for each class to adaptively minimize intra-

class variances. The second is the Hard Prototype Mining,

aiming to make the model concentrate on hard classes by

adaptively selecting a small number of hard prototypes. The

last one is Adaptive Data Sampling, which adaptively finds

valuable samples through a feedback channel from the clas-

sification layer to the data layer. Our approach has seen

significant improvements in several face benchmarks as de-

picted in experiment section. We believe that our approach

could be very helpful for large-scale unbalanced data train-

ing in practice.
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