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Abstract

Recently, deep learning based facial landmark detec-

tion has achieved great success. Despite this, we notice

that the semantic ambiguity greatly degrades the detection

performance. Specifically, the semantic ambiguity means

that some landmarks (e.g. those evenly distributed along

the face contour) do not have clear and accurate definition,

causing inconsistent annotations by annotators. According-

ly, these inconsistent annotations, which are usually provid-

ed by public databases, commonly work as the ground-truth

to supervise network training, leading to the degraded ac-

curacy. To our knowledge, little research has investigated

this problem. In this paper, we propose a novel probabilis-

tic model which introduces a latent variable, i.e. the ‘real’

ground-truth which is semantically consistent, to optimize.

This framework couples two parts (1) training landmark

detection CNN and (2) searching the ‘real’ ground-truth.

These two parts are alternatively optimized: the searched

‘real’ ground-truth supervises the CNN training; and the

trained CNN assists the searching of ‘real’ ground-truth.

In addition, to recover the unconfidently predicted land-

marks due to occlusion and low quality, we propose a glob-

al heatmap correction unit (GHCU) to correct outliers by

considering the global face shape as a constraint. Exten-

sive experiments on both image-based (300W and AFLW)

and video-based (300-VW) databases demonstrate that our

method effectively improves the landmark detection accura-

cy and achieves the state of the art performance.

1. Introduction

Deep learning methods [25, 33, 36, 15, 7, 28, 10, 9] have

achieved great success on landmark detection and other face

analysis tasks due to the strong modeling capacity. Despite

this success, precise and credible landmark detection stil-

∗equal contribution.

Non semantic moving

Semantic moving

Figure 1. The landmark updates in training after the model is

roughly converged. Due to ‘semantic ambiguity’, we can see that

many optimization directions, which are random guided by ran-

dom annotation noises along with the contour and ‘non semantic’.

The others move to the semantically accurate positions. Red and

green dots denote the predicted and annotation landmarks, respec-

tively.

l has many challenges, one of which is the degraded per-

formance caused by ‘semantic ambiguity’. This ambigui-

ty results from the lack of clear definition on those weak

semantic landmarks on the contours (e.g. those on face

contour and nose bridge). In comparison, strong seman-

tic landmarks on the corners (e.g. eye corner) suffer less

from such ambiguity. The ‘semantic ambiguity’ can make

human annotators confused about the positions of weak se-

mantic points, and it is inevitable for annotators to introduce

random noises during annotating. The inconsistent and im-

precise annotations can mislead CNN training and cause

degraded performance. Specifically, when the deep mod-

el roughly converges to the ground-truth provided by public

databases, the network training is misguided by random an-

notation noises caused by ‘semantic ambiguity’, shown in

Fig. 1. Clearly these noises can make the network training

trapped into local minima, leading to degraded results.

In this paper, we propose a novel Semantic Alignment

method which reduces the ‘semantic ambiguity’ intrinsical-

3467



ly. We assume that there exist ‘real’ ground-truths which

are semantically consistent and more accurate than human

annotations provided by databases. We model the ‘real’

ground-truth as a latent variable to optimize, and the opti-

mized ‘real’ ground-truth then supervises the landmark de-

tection network training. Accordingly, we propose a prob-

abilistic model which can simultaneously search the ‘real’

ground-truth and train the landmark detection network in

an end-to-end way. In this probabilistic model, the prior

model is to constrain the latent variable to be close to the

observations of the ‘real’ ground truth, one of which is the

human annotation. The likelihood model is to reduce the

Pearson Chi-square distance between the expected and the

predicted distributions of ‘real’ ground-truth. The heatmap

generated by the hourglass architecture [19] represents the

confidence of each pixel and this confidence distribution is

used to model the predicted distribution of likelihood. A-

part from the proposed probabilistic framework, we further

propose a global heatmap correction unit (GHCU) which

maintains the global face shape constraint and recovers the

unconfidently predicted landmarks caused by challenging

factors such as occlusions and low resolution of images. We

conduct experiments on 300W [23], AFLW [11] and 300-

VW [24, 26, 3] databases and achieve the state of the art

performance.

2. Related work

In recent years, convolutional neural networks (CNN)

achieves very impressive results on face alignment task.

Sun et al [25] proposes to cascade several DCNN to pre-

dict the shape stage by stage. Zhang et al [32] proposes a

single CNN and jointly optimizes facial landmark detection

together with facial attribute recognition, further enhancing

the speed and performance. The methods above use shallow

CNN models to directly regress facial landmarks, which are

difficult to cope the complex task with dense landmarks and

large pose variations.

To further improve the performance, many popular se-

mantic segmentation and human pose estimation frame-

works are used for face alignment [31, 5, 2, 16]. For each

landmark, they predict a heatmap which contains the prob-

ability of the corresponding landmark. Yang et al. [31]

uses a two parts network, i.e., a supervised transformation

to normalize faces and a stacked hourglass network [19] to

get prediction heatmaps. Most recently, JMFA [5] and FAN

[2] also achieve the state of the art accuracy by leveraging

stacked hourglass network. However, these methods do not

consider the ‘semantic ambiguity’ problem which potential-

ly degrades the detection performance.

Two recent works, LAB [28] and SBR [6], are related

to this ‘semantic ambiguity’ problem. By introducing more

information than pixel intensity only, they implicitly alle-

viate the impact of the annotation noises and improve the

performance. LAB [28] trains a facial boundary heatmap

estimator and incorporates it into the main landmark regres-

sion network. LAB uses the well-defined facial boundaries

which provide the facial geometric structure to reduce the

ambiguities, leading to improved performance. However,

LAB is computational expensive. SBR [6] proposes a reg-

istration loss which uses the coherency of optical flow from

adjacent frames as its supervision. The additional informa-

tion from local feature can mitigate the impact of random

noises. However, the optical flow is not always credible in

unconstrained environment and SBR trains their model on

the testing video before the test, limiting its applications.

To summarize, LAB and SBR do not intrinsically address

the problem of ‘semantic ambiguity’ because the degraded

accuracy is actually derived from the inaccurate labels (hu-

man annotations provided by databases). In this work, we

solve the ‘semantic ambiguity’ problem in a more intrinsic

way. Specifically, we propose a probabilistic model which

can simultaneously search the ‘real’ ground-truth without

semantic ambiguity and train a hourglass landmark detector

without using additional information.

3. Semantic ambiguity

The semantic ambiguity indicates that some landmarks

do not have clear and accurate definition. In this work, we

find the semantic ambiguity can happen on any facial points,

but mainly on those weak semantic facial points. For ex-

ample, the landmarks are defined to evenly distribute along

the face contour without any clear definition of the exact

positions. This ambiguity can potentially affect: (1) the ac-

curacy of the annotations and (2) the convergence of deep

model training. For (1), when annotating a database, anno-

tators can introduce random errors to generate inconsistent

ground-truths on those weak semantic points due to the lack

of clear definitions. For (2), the inconsistent ground-truths

generate inconsistent gradients for back-propagation, lead-

ing to the difficulty of model convergence. In this section,

we qualitatively analyze the influence of semantic ambigu-

ity on landmark detection.

Before this analysis, we briefly introduce our heatmap-

based landmark detection network. Specifically, we use

a four stage Hourglass (HGs) [19]. It can generate the

heatmap which provides the probability of the correspond-

ing landmark located at every pixel, and this probability can

facilitate our analysis of semantic ambiguity.

Firstly, we find CNN provides a candidate region rather

than a confirmed position for a weak semantic point. In

Fig. 2 (a), we can see that the heatmap of a strong semantic

point is nearly Gaussian, while the 3D heatmap of a weak

semantic point has a ‘flat hat’, meaning that the confidences

in that area are very similar. Since the position with the

highest confidence is chosen as the output. The landmark

detector tends to output an unexpected random position on

3468



(a) The difference between the heatmap of the eye corner (strong se-

mantic) points and the eye contour (weak semantic) points. Col 2 and

3 represent 2D and 3D heatmaps respectively. In the 3D Gaussian, the

x, y axes are image coordinates and z axis is the prediction confidence.

We can see the 3D heatmap of a weak semantic point has a ‘flat hat’.

(b) The predictions from a series of checkpoints after convergence.

When the model has roughly converged, we continue training and

achieve the predictions from different iterations. Red and green dots

denote the predicted and annotation landmarks, respectively. We can

see the predicted landmarks from different checkpoints fluctuate in the

neighborhood area of the annotated position (green dots).

Figure 2. The effect of semantic ambiguity

the ‘flat hat’.

Secondly, we analyze the ‘semantic ambiguity’ by vi-

sualizing how the model is optimized after convergence.

When the network has roughly converged, we continue

training the network and save a series of checkpoints. In

Fig. 2 (b), the eyebrow landmarks, from different check-

points fluctuate along with the edge of eyebrow, which al-

ways generates considerable loss to optimize. However,

this loss is ineffectual since the predicted points from dif-

ferent checkpoints also fluctuate in the neighborhood area

of the annotated position (green dots in Fig. 2 (b)). It can be

concluded that the loss caused by random annotation noises

dominate the back-propagated gradients after roughly con-

vergence, making the network training trapped into local

minima.

4. Semantically consistent alignment

In this section, we detail our methodology. In Section

4.1, we model the landmark detection problem using a prob-

abilistic model. To deal with the semantic ambiguity caused

by human annotation noise, we introduce a latent variable

ŷ which represents the ‘real’ ground-truth. Then we mod-

el the prior model and likelihood in Section 4.2 and 4.3,

respectively. Section 4.4 proposes an alternative optimiza-

tion strategy to search ŷ and train the landmark detector. To

recover the unconfidently predicted landmarks due to occlu-

sion and low quality, we propose a global heatmap correc-

tion unit (GHCU) in Section 4.5, which refines the predic-

tions by considering the global face shape as a constraint,

leading to a more robust model.

4.1. A probabilistic model of landmark prediction

In the probabilistic view, training a CNN-based land-

mark detector can be formulated as a likelihood maximiza-

tion problem:

max
W

L(W) = P (o|x;W), (1)

where o ∈ R
2N is the coordinates of the observation of

landmarks (e.g. the human annotations). N is the number

of landmarks, x is the input image and W is the CNN pa-

rameters. Under the probabilistic view of Eq. (1), one pixel

value on the heatmap works as the confidence of one partic-

ular landmark at that pixel. Therefore, the whole heatmap

works as the probability distribution over the image.
As analyzed in Section 3, the annotations provided by

public databases are usually not fully credible due to the ‘se-

mantic ambiguity’. As a result, the annotations, in particu-

lar those of weak semantic landmarks, contain random nois-

es and are inconsistent among faces. In this work, we as-

sume that there exists a ‘real’ ground-truth without seman-

tic ambiguity and can better supervise the network training.

To achieve this, we introduce a latent variable ŷ as the ‘real’

ground-truth which is optimized during learning. Thus, Eq.

(1) can be reformulated as:

max
ŷ,W

L(ŷ,W) = P (o, ŷ|x;W)

= P (o|ŷ)P (ŷ|x;W),
(2)

where o is the observation of ŷ, for example, the annota-

tion can be seen as an observation of ŷ from human anno-

tator. P (o|ŷ) is a prior of ŷ given the observation o and

P (ŷ|x;W) is the likelihood.

4.2. Prior model of ‘real’ ground­truth

To optimize Eq. (2), an accurate prior model is impor-

tant to regularize ŷ and reduce searching space. We assume

that the kth landmark ŷk is close to the ok, which is the

observation of ŷ. Thus, this prior is modeled as Gaussian

similarity over all {ok, ŷk} pairs:

P (o|ŷ) ∝
∏

k

exp
(

−
‖ok − ŷk‖2

2σ2

1

)

= exp
(

−
∑

k

‖ok − ŷk‖2

2σ2

1

)

,

(3)
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Figure 3. The search of ‘real’ ground-truth ŷ. Yellow and red box-

es represent the searching space N defined in Eq. (7) and the re-

gion corresponding to one candidate ŷ, respectively. The weight-

ed sum of likelihood and prior is computed as Eq. (8). The search

target is to find a position ŷ with the maximum output.

where σ1 can control the sensitivity to misalignment. To ex-

plain ok, we should know in advance that our whole frame-

work is iteratively optimized detailed in Section 4.4. ok is

initialized as the human annotation in the iteration, and will

be updated by better observation with iterations.

4.3. Network likelihood model

We now discuss the likelihood P (ŷ|x;W) of Eq. (2).

The point-wise joint probability can be represented by the

confidence map, which can be modelled by the heatmap of

the deep model. Note that our hourglass architecture learns

to predict heatmap consisting of a 2D Gaussian centered on

the ground-truth ŷk. Thus, for any position y, the more the

heatmap region around y follows a standard Gaussian, the

more the pixel at y is likely to be ŷk. Therefore, the like-

lihood can be modeled as the distribution distance between

the predicted heatmap (predicted distribution) and the stan-

dard Gaussian region (expected distribution). In this work,

we use Pearson Chi-square test to evaluate the distance of

these two distributions:

χ2(y|x;W) =
∑

i

(Ei − Φi(y|x;W))2

Ei
(4)

where E is a standard Gaussian heatmap (distribution),

which is a template representing the ideal response; i is the

pixel index; Φ is a cropped patch (of the same size as Gaus-

sian template) from the predicted heatmap centered on y.

Finally, the joint probability can also be modeled as a prod-

uct of Gaussian similarities maximized over all landmarks:

P (ŷ|x;W) = exp
(

−
∑

k

χ2

k(ŷ|x;W)

2σ2

2

)

(5)

where k is the landmark index, σ2 is the bandwidth of like-

lihood.

To keep the likelihood credible, we first train a network

with the human annotations. Then in the likelihood, we can

consider the trained network as a super annotator to guide

the searching of the real ground-truth. It results from the

fact that a well trained network is able to capture the statis-

tical law of annotation noise from the whole training set, so

that it can generate predictions with better semantic consis-

tency.

4.4. Optimization

Combining Eq. (2), (3) and (5) and taking log of the

likelihood, we have:

logL(ŷ,W) =
∑

k

(

−
‖ok − ŷk‖2

2σ2

1

−
χ2(ŷ|x;W)

2σ2

2

)

(6)

Reduce Searching Space To optimize the latent semanti-

cally consistent ‘real’ landmark ŷk, the prior Eq. (3) indi-

cates that the latent ‘real’ landmark is close to the observed

landmark ok. Therefore, we reduce the search space of

ŷk to a small patch centered on ok. Then, the optimization

problem of Eq. (6) can be re-written as:

min
ŷ,W

− logL(ŷ,W)

s.t. ŷk ∈ N (ok)
(7)

where N (ok) represents a region centered on ok.

Alternative Optimization To optimize Eq. (7), an alter-

native optimization strategy is applied. In each iteration,

ŷ is firstly searched with the network parameter W fixed.

Then ŷ is fixed and W is updated (landmark prediction net-

work training) under the supervision of newly searched ŷ.
Step 1: When W is fixed, to search the latent variable ŷ,

the optimization becomes a constrained discrete optimiza-

tion problem for each landmark:

min
ŷk

(‖ok − ŷk‖2

2σ2

1

+
χ2(ŷk|x;W)

2σ2

2

)

(8)

where all the variables are known except ŷk. We search ŷk

by going through all the pixels in N (ok) (a neighborhood

area of ok as shown in Fig. 3) and the one with minimal

loss in Eq. (8) is the solution. Since the searching space

N (ok) is very small, i.e. 17 × 17 in this work for 256×256

heatmap, the optimization is very efficient.
Note that in the prior part of Eq. (8), ok is the obser-

vation of ŷk: In the 1st iteration, ok is set to the human

annotations which are the observation of human annotators;

From the 2nd iteration, ok is set to ŷk
t−1

(where t is the it-

eration). Note that ŷk
t−1

is the estimated ‘real’ ground-truth

3470



Figure 4. Gradual convergence (one image represents one iteration) from the observation o (i.e. ŷ of the last iteration, green dots) to the

estimate of real ground-truth ŷ (red dots). For last image, the optimization converges because red and green dots are completely overlapped.

 Output heatmap
 (including failed points)         

GHCU         Final results  
(failed points corrected)       

GHCU         
(a) The use of GHCU for correcting some failed points.

 Output heatmap
 (including failed points)         

GHCU         Final results  
(failed points corrected)       

GHCU         

(b) Correcting challenging points with GHCU on 300-VW.

Figure 5. Global Heatmap Correction Unit (GHCU)

from the last iteration. With the iterations, ŷk
t is converging

to the ‘real’ ground-truth because both the current observa-

tion ok (i.e. ŷk
t−1

) and CNN prediction iteratively become

more credible.
Step 2: When ŷ is fixed, the optimization becomes:

min
W

∑

k

χ2(ŷk|x;W)

2σ2

2

(9)

The optimization becomes a typical network training pro-

cess under the supervision of ŷ. Here ŷ is set to the es-

timate of the latent ‘real’ ground-truth obtained in Step 1.

Figure 4 shows an example of the gradual convergence from

the observation o (ŷ of the last iteration) to the estimate of

real ground-truth ŷ. The optimization of ŷ in our semantic

alignment can easily converge to a stable position, which

does not have hard convergence problem like the traditional

landmark training as shown in Fig. 2b.

4.5. Global heatmap correction unit

Traditional heatmap based methods predict each land-

mark as an individual task without considering global face

shape. The prediction might fail when the model fits im-

ages of low-quality and occlusion as shown in Fig. 5b. The

outliers such as occlusions destroy the face shape and sig-

nificantly reduce overall performance.

Table 1. GHCU Architecture (N is the number of the landmarks)

Layers Output size GHCU

Conv1 128×128 [5×5, 64], stride 2

Conv2 64×64 [3×3, 64], stride 2

Conv3 32×32 [3×3, 32], stride 2

Conv4 16×16 [3×3, 32], stride 2

Conv5 8×8 [3×3, 16], stride 2

Conv6 4×4 [3×3, 16], stride 2

FC1 - 256

FC2 - 2N

Existing methods like local feature based CLM [4] and

deep learning based LGCN [16] apply a 2D shape PCA as

their post-processing step to remove the outliers. Howev-

er, PCA based method is weak to model out-of-plane ro-

tation and very slow (about 0.8 fps in LGCN [16]). In

this work, we propose a Global Heatmap Correction U-

nit (GHCU) to recover the outliers efficiently. We view

the predicted heatmaps as input and directly regress the

searched/optimized ŷ through a light weight CNN as shown

in Tab. 1. The GHCU implicitly learns the whole face shape

constraint from the training data and always gives facial-

shape landmarks, as shown in Fig. 5. Our experiments

demonstrate the GHCU completes fitting with the speed 8

times faster than PCA on the same hardware platform and

achieves higher accuracy than PCA.

5. Experiments

Datesets. We conduct evaluation on three challenging

datasets including image based 300W [23], AFLW [11],

and video based 300-VW [24, 26, 3].
300W [23] is a collection of LFPW [1], HELEN [13],

AFW [21] and XM2VTS [17], which has 68 landmarks.

The training set contains 3148 training samples, 689 test-

ing samples which are further divided into the common and

challenging subsets.
AFLW [11] is a very challenging dataset which has a

wide range of pose variations in yaw (−90◦ to 90◦). In

this work, we follow the AFLW-Full protocol [35] which

ignores two landmarks of ears and use the remaining 19

landmarks.
300-VW [24, 26, 3] is a large dataset for video-based

face alignment, which consists of 114 videos in various
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conditions. Following [24], we utilized all images from

300W and 50 sequences for training and the remaining 64

sequences for testing. The test set consists of three cate-

gories: well-lit, mild unconstrained and challenging.
Evaluation metric. To compare with existing popular

methods, we conduct different evaluation metrics on differ-

ent datasets. For 300W dataset, We follow the protocol in

[22] and use Normalized mean errors (NME) which nor-

malizes the error by the inter-pupil distance. For AFLW,

we follow [34] to use face size as the normalizing factor.

For 300-VW dataset, we employed the standard normalized

root mean squared error (RMSE) [24] which normalizes

the error by the outer eye corner distance.
Implementation Details. In our experiments, all the

training and testing images are cropped and resized to

256×256 according to the provided bounding boxes. To

perform data augmentation, we randomly sample the an-

gle of rotation and the bounding box scale from Gaussian

distribution. We use a four-stage stacked hourglass net-

work [19] as our backbone which is trained by the opti-

mizer RMSprop. As described in Section 4, our algorith-

m comprises two parts: network training and real ground-

truth searching, which are alternatively optimized. Specif-

ically, at each epoch, we first search the real ground-truth

ŷ and then use ŷ to supervise the network training. When

training the roughly converged model with human annota-

tions, the initial learning rate is 2.5 × 10−4 which is de-

cayed to 2.5 × 10−6 after 120 epochs. When training with

Semantic Alignment from the beginning of the aforemen-

tioned roughly converged model, the initial learning rate is

2.5 × 10−6 and is divided by 5, 2 and 2 at epoch 30, 60

and 90 respectively. During semantic alignment, we search

the latent variable ŷ from a 17×17 region centered at the

current observation point o, and we crop a no larger than

25×25 patch from the predicted heatmap around curren-

t position for Pearson Chi-square test in Eq. (4). We set

batch size to 10 for network training. For GHCU, the net-

work architecture is shown in Tab. 1. All our models are

trained with PyTorch [20] on 2 Titan X GPUs.

5.1. Comparison experiment

300W. We compare our approach against the state-of-

the-art methods on 300W in Tab. 2. The baseline (HGs

in Tab. 2) uses the hourglass architecture with human an-

notations, which is actually the traditional landmark detec-

tor training. From Tab. 2, we can see that HGs with our

Semantic Alignment (HGs + SA) greatly outperform hour-

glass (HGs) only, 4.37% vs 5.04% in terms of NME on Full

set, showing the great effectiveness of our Semantic Align-

ment (SA). HGs+SA+GHC only slightly outperforms the

HGs+SA because the images of 300W are of high resolu-

tion, while GHCU works particularly well for images of

low resolution and occlusions verified in the following e-

valuations. Following [7] and [31] which normalize the

Table 2. Comparisons with state of the art on 300W dataset. The

error (NME) is normalized by the inter-pupil distance.

Method

subset
Com. Challenge Full

SDM [30] 5.60 15.40 7.52

CFSS [34] 4.73 9.98 5.76

TCDCN [32] 4.80 8.60 5.54

LBF [22] 4.95 11.98 6.32

3DDFA (CVPR16) [37] 6.15 10.59 7.01

3DDFA + SDM 5.53 9.56 6.31

RAR (ECCV16) [29] 4.12 8.35 4.94

TR-DRN (CVPR17) [15] 4.36 7.56 4.99

Wing (CVPR18) [7] 3.27 7.18 4.04

LAB (CVPR18) [28] 3.42 6.98 4.12

SBR (CVPR18) [6] 3.28 7.58 4.10

PCD-CNN (CVPR18) [12] 3.67 7.62 4.44

DCFE (ECCV18) [27] 3.83 7.54 4.55

HGs 4.43 7.56 5.04

HGs + SA 3.75 6.90 4.37

HGs + SA + GHCU 3.74 6.87 4.35

HGs + Norm 3.95 6.51 4.45

HGs + SA + Norm 3.46 6.38 4.03

HGs + SA + Norm + GHCU 3.45 6.38 4.02

in-plane-rotation by training a preprocessing network, we

conduct this normalization (HGs+SA+GHCU+Norm) and

achieve state of the art performance on Challenge set and

Full set: 6.38% and 4.02%. In particular, on Challenge

set, we significantly outperform the state of the art method:

6.38% (HGs+SA+GHCU+Norm) vs 6.98% (LAB), mean-

ing that our method is particularly effective on challenging

scenarios.
AFLW. Compared with 300W dataset with 68 points

AFLW has only 19 points, most of which are strong seman-

tic landmarks (corner points). Since our SA is particularly

effective on weak semantic points, we conduct experiments

on AFLW to verify whether SA generalizes well to the point

set, most of which are strong semantic points. For fair com-

parison, we do not compare methods using additional out-

side training data, e.g. LAB [28] used additional boundary

information from outside database. As shown in Tab. 3,

HGs+SA outperforms HGs, 1.62% vs 1.95%. It means that

even though corner points are easily to be recognized, there

is still random error in annotation, which can be correct-

ed by SA. It is also observed that HGs+SA+GHCU works

better than HGs+SA.
300-VW. Unlike the image-based databases 300W and

AFLW, 300-VW is video-based database, which is more

challenging because the frame is of low resolution and with

strong occlusions. The subset Category 3 is the most chal-

lenging one. From Tab. 4, we can see that HGs + SA great-

ly outperforms HGs in each of these three test sets. Fur-

thermore, compared with HGs + SA, HGs + SA + GHCU

reduce the error rate (RMSE) by 18% on Category 3 test

set, meaning that GHCU is very effective for video-based

challenges such as low resolution and occlusions because

GHCU considers the global face shape as constraint, being

robust to such challenging factors.
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Table 3. Comparison with state of the art on AFLW dataset. The

error (NME) is normalized by the face bounding box size.

Method AFLW-Full (%)

LBF [22] 4.25

CFSS [34] 3.92

CCL (CVPR16) [35] 2.72

TSR (CVPR17) [15] 2.17

DCFE (ECCV18) [27] 2.17

SBR (CVPR18) [6] 2.14

DSRN (CVPR18) [18] 1.86

Wing (CVPR18) [7] 1.65

HGs 1.95

HGs + SA 1.62

HGs + SA + GHCU 1.60

Table 4. Comparison with state of the art on 300-VW dataset. The

error (RMSE) is normalized by the inter-ocular distance.

Method Category 1 Category 2 Category 3

SDM [30] 7.41 6.18

CFSS [34] 7.68 6.42 13.67

TCDCN [33] 7.66 6.77 14.98

TSTN [14] 5.36 4.51 12.84

DSRN (CVPR18) [18] 5.33 4.92 8.85

HGs 4.32 3.83 9.91

HGs + SA 4.06 3.58 9.19

HGs + SA + GHCU 3.85 3.46 7.51

5.2. Self evaluations

Balance of prior and likelihood As shown in Eq. (6),

the ‘real’ ground-truth is optimized using two parts: pri-

or and likelihood, where σ1 and σ2 determine the impor-

tance of these two parts. Thus, we can use one parameter

σ2

2
/σ2

1
to estimate this importance weighting. We evalu-

ate different values of σ2

2
/σ2

1
in Tab. 5. Clearly, the perfor-

mance of σ2

2
/σ2

1
= 0 (removing Semantic Alignment and

using human annotations only) is worst, showing the im-

portance of the proposed Semantic Alignment. We find that

σ2

2
/σ2

1
= 0.1 achieves the best performance, meaning that

the model relies much more (10 times) on prior than likeli-

hood to achieve the best trade-off.

Table 5. The effect of the ratio σ2

2/σ
2

1 in Eq. (8) on 300W.

σ2

2
/σ2

1
0 0.01 0.05 0.1 0.3 0.5 1

NME (%) 4.99 4.79 4.40 4.37 4.46 4.54 4.68

Template size. As discussed in the Section 3, for a po-

sition y, the similarity between the heatmap region around

it and standard Gaussian template is closely related to the

detection confidence. Therefore, the size of the Gaussian

template, which is used to measure the network confidence

in Eq. (5), can affect the final results. Table 6 reports

the results under different template sizes using the model

HGs+SA. Too small size (size=1) means that the heatmap

value is directly used to model the likelihood instead of Chi-

square test. Not surprisingly, the performance with size=1

is not promising. Large size (size=25) introduces more use-

less information, degrading the performance. In our experi-

ment, we find size=15 for AFLW and size=19 for 300W can

achieve the best result.

Table 6. The effects of template size on 300W and AFLW test sets.

template size 1 7 11 15 19 25

300W Full(%) 4.76 4.72 4.61 4.53 4.37 4.43

AFLW Full (%) 1.89 1.80 1.72 1.62 1.66 1.70

Analysis of the training of semantic alignment. To

verify the effectiveness of Semantic Alignment, we train a

baseline network using hourglass under the supervision of

human annotation to converge. Use this roughly converged

baseline, we continue training using 3 strategies as shown

in Fig. 6 and 7: baseline, SA w/o update (always using hu-

man annotation as the observation, see Eq. (6)) and SA (the

observation is iteratively updated). Fig. 6 and 7 visualize

the changes of training loss and NME on test set against

the training epochs, respectively. We can see that the base-

line curve in Fig. 6 and 7 do not decrease because of the

‘semantic ambiguity’. By introducing SA, the training loss

and test NME steadily drop. Obviously, SA reduces the ran-

dom optimizing directions and helps the roughly converged

network to further improve the detection accuracy.
We also evaluate the condition that uses semantic align-

ment without updating the observation o (‘SA w/o update’

in Fig. 6 and 7). It means o is always set to the human an-

notations. We can see that the curve of ‘SA w/o update’ can

be further optimized but quickly trapped into local optima,

leading to worse performance than SA. We assume that the

immutable observation o reduces the capacity of searching

‘real’ ground-truth ŷ.

0 2 4 6 8 10 12
Epoch

4

6

8

10

12

Lo
ss

 (1
e-

3)

baseline
SA w/o update
SA

Figure 6. Training loss of the baseline, Semantic Alignment with-

out updating observation (SA w/o update) and Semantic Align-

ment (SA). The training starts at a roughly converged model

(trained using human annotations only) using 300W training set.

The update of Semantic Alignment. Under Semantic

Alignment framework, all the training labels are updated

after each epoch. To explore the effects of the number of

epochs on model convergence, we train different models by

stopping semantic alignment at different epochs. In Fig 8, it

is observed that the final performance keeps improving with
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Figure 7. NME of the baseline, Semantic Alignment without

updating observation (SA w/o update) and Semantic Alignmen-

t (SA). The training starts at a roughly converged model (trained

using human annotations only) on 300W full test set.

the times of semantic alignment, which demonstrates that

the improvement is highly positive related to the quality of

the learned ŷ. From our experiment, 10 epochs of semantic

alignment are enough for our data sets.
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Figure 8. NME vs Semantic Alignment update epochs on 300W

full test set

Quality of the searched ‘real’ ground-truth. One im-

portant assumption of this work is that there exist ‘real’

ground-truths which are better than the human annotations.

To verify this, we train two networks which are supervised

by the human annotations provided by public database and

the searched ‘real’ ground-truth, respectively. These two

detectors are a Hourglass model (HGs) and a ResNet [8] re-

gression model as [7]. As shown in Tab. 7, we can see that

on both models the ‘real’ ground-truth (SA) outperforms

the human annotations (HA). Clearly, our learned labels are

better than the human annotations, verifying our assumption

that the semantic alignment can find the semantic consistent

ground-truths.
Global heatmap correction unit. The 2D shape PCA

can well keep the face constraint and can be conducted

as a post-processing step to enhance the performance of

Table 7. The comparison of the labels searched by our Semantic

Alignment (SA) and human annotations (HA) on 300w-full set

Method HGs (HA) HGs (SA) Reg (HA) Reg (SA)

NME (%) 5.04 4.37 5.49 5.12

heatmap based methods, like CLM [4] and most recently L-

GCN [16]. We apply the powerful PCA refinement method

in LGCN and compare it with our GHCU. We evaluate on

300-VW where the occlusion and low-quality are partic-

ularly challenging. As shown in Tab. 8, our CNN based

GHCU outperforms PCA based method in terms of both

accuracy and efficiency.

Table 8. The comparison of GHCU with traditional PCA-based

refinement on 300-VW database.

Method Category 1 Category 2 Category 3 CPU Time (ms)

Baseline 4.06 3.58 9.19 -

PCA [16] 3.99 3.26 7.69 1219

GHCU 3.85 3.46 7.51 149

Ablation study. To verify the effectiveness of different

components in our framework, we conduct this ablation s-

tudy on 300-VW. For a fair comparison, all the experiments

use the same parameter settings. As shown in Tab. 9, Se-

mantic alignment can consistently improve the performance

on all subset sets, demonstrating the strong generalization

capacity of SA. GHCU is more effective on the challenge

data set (Category 3): 8.15% vs 9.91%; Combining SA and

GHCU works better than single of them, showing the com-

plementary of these two mechanisms.

Table 9. Effectiveness of SA and GHCU tested on 300-VW.

Semantic Alignment (SA) X X

GHCU X X

Category 1 3.85 4.03 4.06 4.32

Category 2 3.46 3.66 3.58 3.83

Category 3 7.51 8.15 9.19 9.91

6. Conclusion

In this paper, we first analyze the semantic ambiguity of

facial landmarks and show that the potential random noises

of landmark annotations can degrade the performance con-

siderably. To address this issue, we propose a a novel la-

tent variable optimization strategy to find the semantically

consistent annotations and alleviate random noises during

training stage. Extensive experiments demonstrated that our

method effectively improves the landmark detection accura-

cy on different data sets.

7. Acknowledgments

This work is supported by the Natural Science Founda-

tion of China (Grant No. 61772527, 61806200, 61876178,

61806196).

3474



References

[1] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Ku-

mar. Localizing parts of faces using a consensus of exem-

plars. In Computer Vision and Pattern Recognition, pages

545–552, 2011.

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we

from solving the 2d & 3d face alignment problem?(and a

dataset of 230,000 3d facial landmarks). In International

Conference on Computer Vision, volume 1, page 4, 2017.

[3] Grigoris G Chrysos, Epameinondas Antonakos, Stefanos

Zafeiriou, and Patrick Snape. Offline deformable face track-

ing in arbitrary videos. In Proceedings of the IEEE Inter-

national Conference on Computer Vision Workshops, pages

1–9, 2015.

[4] David Cristinacce and Tim Cootes. Automatic feature local-

isation with constrained local models. Pattern Recognition,

41(10):3054–3067, 2008.

[5] Jiankang Deng, George Trigeorgis, Yuxiang Zhou, and Ste-

fanos Zafeiriou. Joint multi-view face alignment in the wild.

2017.

[6] Xuanyi Dong, Shoou-I Yu, Xinshuo Weng, Shih-En Wei, Yi

Yang, and Yaser Sheikh. Supervision-by-registration: An un-

supervised approach to improve the precision of facial land-

mark detectors. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 360–368,

2018.

[7] Zhen-Hua Feng, Josef Kittler, Muhammad Awais, Patrik Hu-

ber, and Xiao-Jun Wu. Wing loss for robust facial land-

mark localisation with convolutional neural networks. arXiv

preprint arXiv:1711.06753, 2017.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[9] Guosheng Hu, Xiaojiang Peng, Yongxin Yang, Timothy M

Hospedales, and Jakob Verbeek. Frankenstein: Learning

deep face representations using small data. IEEE Transac-

tions on Image Processing, 27(1):293–303, 2018.

[10] Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler,

William Christmas, Stan Z Li, and Timothy Hospedales.

When face recognition meets with deep learning: an eval-

uation of convolutional neural networks for face recognition.

In Proceedings of the IEEE international conference on com-

puter vision workshops, pages 142–150, 2015.

[11] Martin Koestinger, Paul Wohlhart, Peter M Roth, and Horst

Bischof. Annotated facial landmarks in the wild: A large-

scale, real-world database for facial landmark localization.

In Computer Vision Workshops (ICCV Workshops), 2011

IEEE International Conference on, pages 2144–2151. IEEE,

2011.

[12] Amit Kumar and Rama Chellappa. Disentangling 3d pose in

a dendritic cnn for unconstrained 2d face alignment. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 430–439, 2018.

[13] Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and

Thomas S. Huang. Interactive facial feature localization. In

European Conference on Computer Vision, pages 679–692,

2012.

[14] Hao Liu, Jiwen Lu, Jianjiang Feng, and Jie Zhou. Two-

stream transformer networks for video-based face alignment.

IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, (1):1–1, 2017.

[15] Jiang-Jing Lv, Xiaohu Shao, Junliang Xing, Cheng Cheng,

Xi Zhou, et al. A deep regression architecture with two-

stage re-initialization for high performance facial landmark

detection. In CVPR, volume 1, page 4, 2017.

[16] Daniel Merget, Matthias Rock, and Gerhard Rigoll. Robust

facial landmark detection via a fully-convolutional local-

global context network. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

781–790, 2018.

[17] K. Messer, J. Matas, J. Kittler, and K. Jonsson. Xm2vts:

the extended m2vts database. In Proc. Second Internation-

al Conference on Audio- and Video-Based Biometric Person

Authentication, pages 72–77, 2000.

[18] Xin Miao, Xiantong Zhen, Xianglong Liu, Cheng Deng, Vas-

silis Athitsos, and Heng Huang. Direct shape regression net-

works for end-to-end face alignment. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5040–5049, 2018.

[19] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In European Con-

ference on Computer Vision, pages 483–499. Springer, 2016.

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[21] Deva Ramanan. Face detection, pose estimation, and land-

mark localization in the wild. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2879–2886,

2012.

[22] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Face

alignment via regressing local binary features. IEEE Trans-

actions on Image Processing, 25(3):1233–1245, 2016.

[23] Christos Sagonas, Georgios Tzimiropoulos, Stefanos

Zafeiriou, and Maja Pantic. A semi-automatic methodology

for facial landmark annotation. In Computer Vision and

Pattern Recognition Workshops, pages 896–903, 2013.

[24] Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kos-

saifi, Georgios Tzimiropoulos, and Maja Pantic. The first

facial landmark tracking in-the-wild challenge: Benchmark

and results. In Proceedings of the IEEE International Con-

ference on Computer Vision Workshops, pages 50–58, 2015.

[25] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolu-

tional network cascade for facial point detection. In Comput-

er Vision and Pattern Recognition, pages 3476–3483, 2013.

[26] Georgios Tzimiropoulos. Project-out cascaded regression

with an application to face alignment. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 3659–3667, 2015.
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