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Abstract

Long-tailed problem has been an important topic in face

recognition task. However, existing methods only concen-

trate on the long-tailed distribution of classes. Differently,

we devote to the long-tailed domain distribution problem,

which refers to the fact that a small number of domains fre-

quently appear while other domains far less existing. The

key challenge of the problem is that domain labels are too

complicated (related to race, age, pose, illumination, etc.)

and inaccessible in real applications. In this paper, we pro-

pose a novel Domain Balancing (DB) mechanism to han-

dle this problem. Specifically, we first propose a Domain

Frequency Indicator (DFI) to judge whether a sample is

from head domains or tail domains. Secondly, we formu-

late a light-weighted Residual Balancing Mapping (RBM)

block to balance the domain distribution by adjusting the

network according to DFI. Finally, we propose a Domain

Balancing Margin (DBM) in the loss function to further op-

timize the feature space of the tail domains to improve gen-

eralization. Extensive analysis and experiments on several

face recognition benchmarks demonstrate that the proposed

method effectively enhances the generalization capacities

and achieves superior performance.

1. Introduction

Feature descriptor is of crucial importance to the perfor-

mance of face recognition, where the training and testing

images are drawn from different identities and the distance

metric is directly acted on the features to determine whether

they belong to the same identity or not. Recent years have

witnessed remarkable progresses in face recognition, with a

variety of approaches proposed in the literatures and applied

in real applications [18, 32, 4, 7, 6, 42]. Although yielding

excellent success, face recognition often suffers from poor

∗Equally-contributed
†Corresponding author

Figure 1. The long-tailed domain distribution demarcated by the

mixed attributions (e.g., race and age) in the MS-Celeb-1M [8]

and CASIA-Webface [36]. Number of classes per domain falls

drastically, and only few domains have abundant classes. (Baidu

API [1] is used to estimate the race and age)

generalization, i.e., the learned features only work well on

the domain the same as the training set and perform poorly

on the unseen domains. This is one of the most critical is-

sues for face recognition in the wild, partially due to the

non-negligible domain shift from the training set to the de-

ployment environment.

Real-world visual data inherently follows a long-tailed

distribution, where only a limited number of classes appear

frequently, and most of the others remain relatively rare. In

this paper, we aim to investigate the long-tailed domain dis-

tribution and balance it to improve the generalization capac-

ity of deep models. However, different from the long-tailed

problem in classes, domain labels are inaccessible in most

of applications. Specifically, domain is an abstract attribute

related to many aspects, e.g., age (baby, child, young man,

aged, etc), race (caucasian, indian, asian, african, etc.), ex-

pression (happy, angry, surprise, etc.), pose (front, profile,

etc.), etc. As a result, the domain information is hard to

label or even describe. Without the domain label, it is diffi-

cult to judge whether a sample belongs to the head domains

or the tail domains, making existing methods inapplicable.

Figure 1 illustrates a possible partition by the mixed attribu-

tions (e.g., race and age).

We formally study this long-tailed domain distribution
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Figure 2. The face features are trivially grouped together according

to different attributions, visualized by t-SNE [20]

problem arising in real-world data settings. Empirically,

the feature learning process will be significantly dominated

by those few head domains while ignoring many other tail

domains, which increases the recognition difficulty in the

tail domains. Such undesirable bias property poses a sig-

nificant challenge for face recognition systems, which are

not restricted to any specific domain. Therefore, it is neces-

sary to enhance the face recognition performance regardless

of domains. An intuitive method to handle the long-tailed

problem is over-sampling and under-sampling samples on

the tail and the head, respectively [10, 27, 41]. However,

it does not work well on domain balancing since the the

ground-truth domain distribution is inaccessible. To over-

come this drawback, we propose a Domain Balancing (DB)

mechanism to balance the long-tailed domain distribution.

Firstly, since the ground truth domain distributions are

inaccessible without domain labels, for each sample, we

should predict where the belonged domain locates on the

distribution. To this end, we point out that the domain fre-

quency can be instructed by the inter-class compactness. In

the holistic feature space, the classes with similar attributes

tend to group, forming a specific domain as shown in Fig-

ure 2. Besides, in the feature space, the compactness is not

everywhere equal. Take the domains in Figure 1 as an ex-

ample, we find the compact regions tend to belong to the

head domains (e.g., caucasian male), and the sparse regions

tend to belong to the tail domains (e.g., children, african fe-

male). The detailed analysis will be shown in Section 3.1.

Motivated by these observations, we propose to utilize the

inter-class compactness which is the local distances within

a local region as the Domain Frequency Indicator (DFI).

Secondly, considering the samples belong to the same do-

main share some appearance consistency, we design a novel

module called Residual Balancing Mapping (RBM) block,

which can adaptively change the network based on DFI to

find the best network to adjust each domain. The block con-

sists of two components: a domain enhancement branch and

a soft gate. The domain enhancement branch aims to adjust

the network to each domain through enhancement residual

and the soft gate attaches a harmonizing parameter to the

residual to control the amount of residual according to the

domain frequency. Thirdly, in the loss function, we propose

a Domain Balancing Margin (DBM) to adaptively modify

the margin according to the DFI for each class, so that the

loss produced by the tail domain classes can be relatively

up-weighted. The framework is shown in Figure 3.

The major contributions can be summarized as follows:

• We highlight the challenging long-tailed domain prob-

lem, where we must balance the domain distribution

without any domain annotation.

• We propose a Domain Balancing (DB) mechanism to

solve the long-tailed domain distribution problem. The

DB can automatically evaluate the domain frequency

of each class with a Domain Frequency Indicator (DFI)

and adapt the network and loss function with Resid-

ual Balancing Mapping (RBM) and Domain Balancing

Margin (DBM), respectively.

• We evaluate our method on several large-scale face

datasets. Experimental results show that the proposed

Domain Balancing can efficiently mitigate the long-

tailed domain distribution problem and outperforms

the state-of-the-art approaches.

2. Related Works

Softmax based Face Recognition. Deep convo-

lutional neural networks (CNNs) [3] have achieved

impressive success in face recognition. The current pre-

vailing softmax loss considers the training process as a

N-way classification problem. Sun et al. [28] propose the

DeepID for face verification. In the training process, for

each sample, the extracted feature is taken to calculate the

dot products with all the class-specific weights. Wen et

al. [35] propose a new center loss penalizing the distances

between the features and their corresponding class centers.

Wang et al. [31] study the effect of normalization during

training and show that optimizing cosine similarity (cosine-

based softmax loss) instead of inner-product improves the

performance. Recently, a variety of margin based softmax

losses [18, 32, 4] have achieved the state-of-the-art per-

formances. SphereFace [18] adds an extra angular margin

to attain shaper decision boundary of the original softmax

loss. It concentrates the features in a sphere mainfold.

CosFace [32] shares a similar idea which encourages the
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Figure 3. There are three main modules: DFI, RBM and DBM. The DFI indicates the local distances within a local region. The RBM

harmonizes the representation ability in the network architecture, while the DBM balances the contribution in the loss.

intra-compactness in the cosine manifold. Another effort

ArcFace [4] uses an additive angular margin, leading to

similar effect. However, these efforts only consider the

intra-compactness. RegularFace [38] proposes an exclusive

regularization to focus on the inter-separability. These

methods mainly devote to enlarge the inter-differences

and reduce the intra-variations. Despite their excellent

performance on face recognition, they rely more on the

large and balanced datasets and often suffer performance

degradation when facing with the long-tailed data.

Long− tailed Learning Long-tailed distribution of

data has been well studied in [37, 19]. Most existing meth-

ods define the long-tailed distribution in term of the size of

each class. A widespread method is to resample and rebal-

ance training data, either by under-sampling examples from

the head data [10], or over-sampling samples from the rare

data more frequently [27, 41]. The former generally loses

critical information in the head sets, whereas the latter gen-

erates redundancy and may easily encounter the problem of

over-fitting to the rare classes. Some recent strategies in-

clude hard negative mining [5, 15], metric learning [12, 23]

and meta learning [9, 34]. The range loss [37] proposes

an extra range constraint jointly with the softmax loss. It

reduces the k greatest intra-class ranges and enlarges the

shortest inter-class distance within one batch. The focal loss

[15] employs an online version of hard negative mining. Liu

et al. [19] investigate the long-tailed problem in the open

set. Its so-called dynamic meta-embedding uses an associ-

ated memory to enhance the representation. Adaptiveface

[16] analyzes the difference between rich and poor classes

and proposes the adaptive margin softmax to dynamically

modify the margins for different classes. Although the long-

tailed problem has been well studied, they are mainly based

on the category frequency distribution. None of previous

works consider the similar problem in domain. One possi-

Figure 4. (a) Identities with small inter-class compactness value

in the MS-Celeb-1M. (b) The inter-class compactness vs. race

distribution. (c) The inter-class compactness vs. age distribution.

ble reason may be due to the ambiguous domain partition

as discussed above. In fact, the domains may not even have

explicit semantics, i.e., they are actually data-driven.

In contrast, our method focuses on the long-tailed do-

main, which is more in line with the real-world application.

The proposed method balances the contribution of domains

on the basis of their frequency distribution, so that it can

improve the poor generalization well.

3. Domain Balancing

We propose to balance the samples from different do-

mains without any domain annotation. Domain Balanc-

ing (DB) mechanism has three components: Domain Fre-

quency Indicator (DFI) to evaluate the domain frequency,

the Residual Balancing Mapping (RBM) to adjust the net-

work and the Domain Balancing Margin (DBM) to adjust

the loss functions according to domain distribution.
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Figure 5. The Residual Balancing Module is designed with light-

weighted structure and it can be easily attached to existing network

architecture. The block dynamically enhances the feature accord-

ing to DFI.

3.1. Domain Frequency Indicator

To handle the long-tailed domain distribution problem,

we first need to know whether a sample is from a head do-

main or from a tail domain. We introduce a Domain Fre-

quency Indicator (DFI) based on the inter-class compact-

ness. Inter-class compactness function of a given class is

formulated as:

IC(w) = log
K

∑
k=1

es·cos(wk,w) (1)

where w is the prototype of one class in the classification

layer and k is the k-th nearest class, where the distance of

two classes i, j is formulated as cos(wi,w j). The high fre-

quency domain, i.e., head domain, usually corresponds to

a large IC(w), and vice versa. Then we define the Domain

Frequency Indicator as:

DFI =
ε

IC(w)
(2)

which is inversely proportional to the inter-class compact-

ness IC(w) and ε is a constant value. Ideally, if the classes

are uniformly distributed, each class will have the same

DFI. Otherwise, the classes with larger DFI are more likely

to come from a tail domain and should be relatively up-

weighted. As shown in Figure 4, the identities with larger

DFI values usually come from Africa, children or the aged,

which are highly related with the tail domains.

3.2. Residual Balancing Module

In real-world application, face recognition accuracy de-

pends heavily on the quality of the top-level feature x. The

goal in this section is to design a light-weight solution to

adjust the network to extract domain specific features ac-

cording to the domain distribution. Our Residual Balancing

Module (RBM) combines the top-level image feature and a

residual feature, using DFI to harmonize the magnitude.

Figure 6. Geometrical interpretation of DBM from the feature per-

spective. Different color areas indicate feature space from distinct

classes. Yellow area represents the head-domain class C1 and blue

area represents the tailed-domain class C2. (a) CosFace assigns

an uniform margin for all the classes. The sparse inter-class dis-

tribution in the tail domains makes the decision boundary easy to

satisfy. (b) DBM assigns margin according to the inter-class com-

pactness adaptively.

Even though big training data facilitates the feature dis-

criminative power, the head domains dominate the learning

process and the model lacks adequate supervised updates

from the tail classes. We hope to learn a harmonizing mod-

ule through a mapping function Mre(.) to adjust the features

for samples of different domain frequency to mitigate the

domain imbalance problem. We formulate Mre as a sum of

the original feature x and residual acquired by a feature en-

hancement module R(x) weighted by f (x). We denote the

resulting feature as xre and the RRM can be formulated as:

xre = Mre(x)

= x+ f (x) ·R(x)
(3)

where x is the top-level feature, f (x) is a soft gate depending

on the DFI. When DFI is large, the input feature probably

belongs to a tail class, and a large enhancement is assigned

to the residual. Otherwise, the enhancement is trivial. The

magnitude of residual is thus inversely proportional to the

domain frequency. The combination of the soft gate and and

the residual can be regarded as a harmonizing mechanism

that adopts domain distribution information to control the

magnitude to be passed to the next layer.

We now describe the implementation of the two com-

ponents: The first component is the residual R(x), which

is implemented by a light-weighted full-connected layer. It

consists of two full-connected layers and a batch norm layer

shown in Figure 5. The second component is the soft gate

coefficient DFI, which is learned from the feature x and su-

pervised by the DFI. For simplicity, the linear regression is

employed by the L2 loss:

Lrrm = ‖ f (x)−DFI(x)‖2
2 (4)

where DFI(x) is defined in Eq. 2 from the last iteration.

f (x) is a mapping function devoting to associate the repre-

sentation x and DFI.
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3.3. Domain Balancing Margin

We propose a domain-aware loss by Domain Balancing

Margin (DBM) to adaptively strengthen the classes in the

tail domains. Specifically, we formulate the DBM loss by

embedding the DFI into CosFace as:

Ldbm =−logPi,yi
=−log

es(cosθi,yi
−βyi

·m)

es(cosθi,yi
−βyi

·m)+∑
C
k 6=yi

es·cosθi,k

(5)

where βyi
= DFIyi

and m is a fixed parameter as defined in

CosFace. Figure 6 visualizes the phenomenon through a tri-

nary classification. The main difference between DBM and

CosFace is that our margin is dynamic and feature com-

pactness related. For the CosFace, the decision bound-

ary assigns the same margin without considering the fea-

ture compactness. It cannot efficiently compact the feature

space of the tailed-domain class C2 since the sparse inter-

class distribution makes the decision boundary easy to sat-

isfy. The termination of optimization is so early, leading to

poor generalization. In contrast, our DBM drives adaptive

decision boundary in terms of the inter-compactness, where

margin2 (tailed-domain margin) should be much larger than

margin1 (head-domain margin). Consequently, both the

inter-separability and the intra-compactness can be guaran-

teed.

We combine the mentioned Ldbm and Lrrm by a parameter

λ . The final loss function can be formulated as:

L = Ldbm +λLrrm (6)

4. Experiments

4.1. Datasets

Training Set. We employ CASIA-Webface [36] and

MS-Celeb-1M [8] as our training sets. CASIA-WebFace is

collected from the web. The face images are collected from

various professions and suffer from large variations in illu-

mination, age and pose. MS-Celeb-1M is one of the largest

real-world face datasets containing 98,685 celebrities and

10 million images. Considering the amount of noise, we

use a refined version called MS1MV2 [4] where a lot of

manual annotations are employed to guarantee the quality

of the dataset.

Testing Set. During testing, we firstly explore databases

(RFW [33], AFW [2]) with obvious domain bias to check

the improvement. RFW is a popular benchmark for racial

bias testing, which contains four subsets, Caucasian, Asian,

India and African. Moreover, we collect a new dataset

from CACD [2], called Age Face in-the-Wild (AFW). We

construct three testing subsets, Young (14-30 years old),

Middle-aged (31-60 years old) and Aged (60-90 years old).

Each subset contains 3,000 positive pairs and 3,000 nega-

tive pairs respectively. Besides, we further report the perfor-

mance on several widely used benchmarks including LFW

[13], CALFW [40], CPLFW [39] and AgeDB [21]. LFW

contains color face images from 5,749 different persons in

the web. We verify the performance on 6,000 image pairs

following the standard protocol of unrestricted with labeled

outside data. CALFW is collected with obvious age gap to

add aging process intra-variance on the Internet. Similarly,

CPLFW is collected in terms of pose difference. AgeDB

contains face images from 3 to 101 years old. We use the

most challenging subset AgeDB-30 in the following exper-

iments. We also extensively evaluate our proposed method

on large-scale face dataset, MegaFace [14]. MegaFace is

one of the most challenging benchmark for large scale face

identification and verification. The gallery set in MegaFace

includes 1M samples from 690K individuals and the probe

set contains more than 100K images of 530 different indi-

viduals from FaceScrub [22]. Table 1 shows the detailed

information of the involved datasets.

Table 1. Statistics of face datasets for training and testing. (P) and

(G) indicates the probe and gallery set respectively.

Dataset Identities Images

Training
CASIA [36] 10K 0.5M

MS1MV2 [4] 85K 5.8M

Testing

LFW [13] 5749 13,233

CPLFW [39] 5,749 12,174

CALFW [40] 5,749 11,652

AgeDB [21] 568 16,488

RFW [33] 11,430 40,607

CACD [2] 2,000 160,000

MegaFace [14] 530 (P) 1M(G)

4.2. Experimental Settings

For data prepossessing, the face images are resized to

112× 112 by employing five facial points, and each pixel

in RGB images is normalized by subtracting 127.5 and di-

viding by 128. For all the training data, only horizontal

flipping is used for data augmentation. For the embedding

neural network, we employ the widely used CNNs archi-

tectures, ResNet18 and ResNet50 [11]. They both contain

four residual blocks and finally produce a 512-dimension

feature.

In all the experiments, the CNNs models are trained with

stochastic gradient descents (SGD). We set the weight de-

cay of 0.0005 and the momentum of 0.9. The initial learn-

ing rate starts from 0.1 and is divided by 10 at the 5, 8, 11

epochs. The training process is finished at 15-th epoch. We

set ε = 5.5 and λ = 0.01 in all the experiments. The exper-

iments are implemented by PyTorch [25] on NVIDIA Tesla

V100 (32G). We train the CNNs models from scratch and

only keep the feature embedding part without the final fully

connected layer (512-D) during testing.
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Table 2. Face verification results (%) with different strategies. (CASIA-Webface, ResNet18, RBM (w/o sg) refers to RBM without the soft

gate, i.e., f (x) = 1.)

Module
LFW CALFW CPLFW AgeDB Average

RBM(w/o sg) RBM DBM

CASIA-Webface

98.8 91.0 85.4 90.2 91.35

X 99.2 92.0 87.3 91.9 92.6

X 99.1 91.0 87.1 91.3 92.12

X 98.7 90.6 85.4 90.3 91.25

X X 99.3 92.5 87.6 92.1 92.88

Figure 7. (a) The performance on four testing subsets, Caucasian,

Indian, Asian and African in RFW. (b) The performance on three

testing subsets, Young [0-30), Middle-aged [30-60) and Aged [60-

90) in AFW.

We use cosine distance to calculate the similarity. For the

performance evaluation, we follow the standard protocol of

unrestricted with labeled outside data [13] to report the per-

formance on LFW, CALFW, CPLFW, AgeDB, RFW and

AFW. Considering the well solved on LFW, we further use

the more challenging LFW BLUFR protocol to evaluate the

proposed method. On MegaFace, there are two challenges.

We use large protocol in Challenge 1 to evaluate the perfor-

mance of our approach. For the fair comparison, we also

clean the noisy images in Face Scrub and MegaFace by the

noisy list [4].

To the compared approaches, we compare the proposed

method with the baseline Softmax loss and the recently pop-

ular state-of-the-arts, including SphereFace [18], CosFace

[32] and ArcFace [4].

4.3. Ablation Study

In this section, we investigate the effectiveness of each

balancing module in the proposed method.

Effectiveness of the RBM. Recall that the RBM mod-

ule consists of two main components: the residual enhance-

ment and the soft gate. The soft gate produces a harmo-

nizing coefficient to automatically control the magnitude of

the residual attached to the top feature. When the soft gate

is closed, i.e, f (x) = 1 is constant for all samples, the RBM

module degenerates to a conventional residual that loses the

ability of distinguishing the head and tail domains. From

Table 2, we observe that the combination of the residual en-

hancement and the soft gate brings large improvements on

all the datasets. The average performance of LFW, CALFW,

CPLFW, AgeDB has been improved from 91.35 to 92.12. It

is because RBM actually harmonizes the potential feature

bias among different domains.

Effectiveness of the Soft Gate. The soft gate pro-

duces the coefficient DFI to control the magnitude of resid-

ual added on the original feature. In this experiment we

analyze the effectiveness of the soft gate. As displayed in

Table 2, the performance drops significantly without the soft

gate. The average accuracy decreases 0.87%. These results

suggest that the improvement attained by the RBM block is

not mainly due to the additional parameters, but its internal

domain balancing mechanism.

Effectiveness of the DBM. We further validate the ef-

fectiveness of DBM that whether it can improve the poor

generalization caused by the long-tailed domain distribu-

tion. From the first row of each sub-boxes in Table 2, we can

find that DBM boosts the performance on all the datasets.

The average performance is stably improved compared to

the baselines, presenting its contribution to mitigate the po-

tential imbalance. Particularly, DBM achieves about 0.48%

average improvement over RBM, which indicates that bal-

ancing the contribution from different domains through loss

function can better address the problem.

4.4. Exploratory Experiments

We first investigate how our method improves the per-

formance on the different domains with different domain

frequency. We train Resnet50 on CASIA-Webface by Cos-

Face and our method. Figure 7 shows the performances on

different domains on two datasets. Firstly, for the Cosface,

the accuracy of Caucasian on RFW is significantly higher

than other races, and Asian gains the worse performance.

Besides, on AFW, the Young subset acquires the highest ac-

curacy while the performance on the aged persons degrades

heavily. The performance decay confirms our thought that

the popular methods is susceptible to the long-tailed domain

distribution. Secondly, our method consistently improves

the performance on almost all the domains. Particularly, the

accuracy increases more obviously on the tail domains, such

as the Asian on RFW and [60,90) aged persons on AFW,

5676



which indicates that the proposed method can alleviate the

potential imbalance cross domains.

The nearest neighbor parameter K in Eq. 1 plays an im-

portant role in DFI. In this part we conduct an experiment

to analyze the effect of K. We use CASIA-WebFace and

ResNet18 to train the model with our method and evaluate

the performance on the LFW, CALFW and CPLFW as pre-

sented in Table 3. We can conclude that the model without

DFI suffers from the poor performances on all these three

benchmarks. The model attains the worst result on all the

datasets when K = 0, where the model degenerates into the

original form without balancing representation and margin

supplied by RBM and DBM. The model obtains the high-

est accuracy at K = 100. However, when K keeps increas-

ing, the performances decrease to some extent because a too

large K covers a too large region with sufficient samples and

weakens the difference between head and tail domain.

Table 3. Performance (%) vs. K on LFW, CALFW and CPLFW

datasets, where K is the number of nearest neighbor in Domain

Frequency Indicator (DFI).

K 0 100 1,000 3,000 6,000

LFW 98.8 99.3 99.1 99.2 99.2

CALFW 91.0 92.5 92.1 92.2 92.1

CPLFW 85.4 87.6 87.2 87.3 87.3

4.5. Evaluation Results

4.5.1 Results on LFW and LFW BLUFR

LFW is the most widely used benchmark for unconstrained

face recognition. We use the common larget dataset

MSIMV2 to train a ResNet50. Table 4 displays the the

comparsion of all the methods on LFW testset. The pro-

posed method improves the performance from 99.62% to

99.78%. Further, we evaluate our method on the more chal-

lenge LFW BLUFR protocol. The results are reported in

Table 5. Despite the limited improvement, our approach

still achieves the best results compared to the state-of-the-

arts.

4.5.2 Results on CALFW, CPLFW and AgeDB

Table 6 shows the performances on CALFW, CPLFW and

AgeDB, respectively. We also use MSIMV2 to train the

ResNet50. The results show the similar treads that emerged

on the previous test sets. Particularly, the margin-based

methods attain better results than the simple softmax loss

for face recognition. Our proposed method, containing ef-

ficient domain balancing mechanism, outperforms all the

other methods on these three datasets. Specifically, our

method achieves 95.54% average accuracy, about 0.4% av-

erage improvement over ArcFace.

Table 4. Face verification (%) on the LFW dataset. ”Training

Data” indicates the size of the training data involved. ”Models”

indicates the number of models used for evaluation.

Method Training Data Models LFW

Deep Face [30] 4M 3 97.35

FaceNet [26] 200M 1 99.63

DeepFR [24] 2.6M 1 98.95

DeepID2+ [29] 300K 25 99.47

Center Face [35] 0.7M 1 99.28

Baidu [17] 1.3M 1 99.13

Softmax 5M 1 99.43

SphereFace [18] 5M 1 99.57

CosFace [32] 5M 1 99.62

ArcFace [4] 5M 1 99.68

Ours 5M 1 99.78

Table 5. Face verification (%) on LFW BLUFR protocol.

Method
VR@FAR

=0.001%

VR@FAR

=0.01%

Softmax 87.53 93.03

SphereFace [18] 98.50 99.17

CosFace [32] 98.70 99.20

ArcFace [4] 98.77 99.23

Ours 98.91 99.53

Table 6. Face verification (%) on CALFW, CPLFW and AgeDB.

Method CALFW CPLFW AgeDB

Softmax 89.41 81.13 94.77

SphereFace [18] 90.30 81.40 97.30

CosFace [32] 93.28 92.06 97.70

ArcFace [4] 95.45 92.08 97.83

Ours 96.08 92.63 97.90

4.5.3 Results on MegaFace

We also evaluate our method on the large Megaface testset.

Table 7 displays the identification and verification perfor-

mances. In particular, the proposed method surpasses the

best approach ArcFace by an obvious margin (about 0.82%

at Rank-1 identification rate and 0.68% verification rate).

The reason behind may be that the proposed balancing strat-

egy can efficiently mitigate the potential impact of the long-

tailed domain distribution, which is ubiquitous in the real-

world application.

5. Conclusion

In this paper, we investigate a novel long-tailed do-

main problem in the real-world face recognition, which

refers to few common domains and many more rare do-
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Table 7. Face identification and verification on MegaFace Chal-

lenge1. ”Rank 1” refers to the rank-1 face identification accuracy,

and ”Ver” refers to the face verification TAR at 10−6 FAR.

Method Rank1 (%) Ver (%)

DeepSense V2 81.29 95.99

YouTu Lab 83.29 91.34

Vocord-deepVo V3 91.76 94.96

SphereFace [18] 92.05 92.42

CosFace [32] 94.84 95.12

ArcFace [4] 95.53 95.88

Ours 96.35 96.56

mains. A novel Domain Balancing mechanism is proposed

to deal with this problem, which contains three compo-

nents, Domain Frequency Indicator (DFI), Residual Bal-

ancing Mapping (RBM) and Domain Balancing Margin

(DBM). Specifically, DFI is employed to judge whether a

class belongs to a head domain or a tail domain. RBM intro-

duces a light-weighted residual controlled by the soft gate.

DBM assigns an adaptive margin to balance the contribu-

tion from different domains. Extensive analyses and exper-

iments on several face recognition benchmarks demonstrate

that the proposed method can effectively enhance the dis-

crimination and achieve superior accuracy.
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