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Abstract

Face recognition systems are usually faced with unseen
domains in real-world applications and show unsatisfac-
tory performance due to their poor generalization. For ex-
ample, a well-trained model on webface data cannot deal
with the ID vs. Spot task in surveillance scenario. In this
paper, we aim to learn a generalized model that can directly
handle new unseen domains without any model updating.
To this end, we propose a novel face recognition method
via meta-learning named Meta Face Recognition (MFR).
MFR synthesizes the source/target domain shift with a meta-
optimization objective, which requires the model to learn
effective representations not only on synthesized source do-
mains but also on synthesized target domains. Specifi-
cally, we build domain-shift batches through a domain-level
sampling strategy and get back-propagated gradients/meta-
gradients on synthesized source/target domains by optimiz-
ing multi-domain distributions. The gradients and meta-
gradients are further combined to update the model to
improve generalization. Besides, we propose two bench-
marks for generalized face recognition evaluation. Experi-
ments on our benchmarks validate the generalization of our
method compared to several baselines and other state-of-
the-arts. The proposed benchmarks and code will be avail-
able at https://github.com/cleardusk/MFR.

1. Introduction

Face recognition is a long-standing topic in the research
community. Recent works [1, 2, 3,4, 5, 6, 7, 8] have pushed
the performance to a very high level on several common
benchmarks, e.g. LFW [9], YTF [10] and MegaFace [11].
These methods are based on the assumption that the training
sets like CASIA-Webface [12], MS-Celeb [13] and testing
sets have similar distribution. However, in real-world ap-
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Figure 1: An illustration of our MFR for generalized face
recognition problem. The left column contains four source
domains of different races, the right includes five target
domains: cross-age (CACD-VS), NIR-VIS face matching
(CASIA NIR-VIS 2.0), large pose (Multi-PIE), eyeglass oc-
clusion (MeGlass) and ID vs. Spot (Public-IvS), which are
unseen in training. By meta-learning on the simulated meta-
train/meta-test shifts in source domains, our model learns
the transferable knowledge across domains to generalize
well on target unseen domains.

plications of face recognition, the model trained on source
domains Dy is usually deployed in another domain D with
a different distribution. There are two kinds of scenarios: (i)
the target domain D7 is known and the data is accessible.
(ii) the target domain is unseen. Approaches to the first sce-
nario are categorized into domain adaptation for face recog-
nition, where the common setting is that the source domain
Dg contains a labelled face domain and the target domain
Dy is with or without labels. Domain adaption methods try
to adapt the knowledge learned from Dg to Dr so that the
model generalizes well on Dr. The second scenario can
be regarded as domain generalization for face recognition,
and we call it Generalized Face Recognition, which is more
common as the trained model is usually deployed in un-
known scenarios and faced with unseen data. As illustrated
in Fig. 1, the deployed model should be able to generalize
to unseen domains without any updating or fine-tuning.
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Compared with domain adaptation, generalized face
recognition is less studied and more challenging, since it
makes no assumptions about target domains. To the best of
our knowledge, there are no relative studies on generalized
face recognition problem. A related task is domain gener-
alization on visual recognition, it assumes that the source
and target domains share the same label space, and has a
small set, e.g., 7 categories [ |4]. However, generalized face
recognition is an open-set problem and has a much larger
scale of categories, making existing methods inapplicable.

In this paper, we aim to learn a model for general-
ized face recognition problem. Once trained on a set
of source domains, the model can be directly deployed
on an unseen domain without any model updating. In-
spired by [14, 15], we propose a novel face recognition
framework via meta-learning named Meta Face Recogni-
tion (MFR). MFR simulates the source/target domain shift
with a meta-optimization objective, which optimizes the
model to learn effective face representations not only on
synthesized source domains but also on synthesized target
domains. Specifically, a domain-level sampling strategy is
adopted to simulate the domain shift such that source do-
mains are divided into meta-train/meta-test domains. To op-
timize multi-domain distributions, we propose three com-
ponents: 1) the hard-pair attention loss optimizes the local
distribution with hard pairs, 2) soft-classification loss con-
siders the global relationship within a batch and 3) domain
alignment loss learns to reduce meta-train domains discrep-
ancy by aligning domain centers. These three losses are
combined to learn domain-invariant and discriminative face
representations. The gradients from meta-train domains and
meta-gradients from meta-test domains are finally aggre-
gated by meta-optimization, and are then used to update the
network to improve model generalization. Compared with
traditional meta-learning methods, our MFR does not need
model updating for target domains and can directly handle
unseen domains.

Our main contributions include: (i) For the first time, we
highlight the generalized face recognition problem, which
requires a trained model to generalize well on unseen do-
mains without any updating. (ii) We propose a novel Meta
Face Recognition (MFR) framework to solve generalized
face recognition, which meta-learns transferable knowledge
across domains to improve model generalization. (iii) Two
generalized face recognition benchmarks are designed for
evaluation. Extensive experiments on the proposed bench-
marks validate the efficacy of our method.

2. Related work

Domain Generalization. Domain generalization can be
traced back to [16, 17]. DICA [17] adopts the kernel-based
optimization to learn domain-invariant features. CCSA [18]
can handle both domains adaptation and domain generaliza-

tion problems by aligning a source domain distribution to a
target domain distribution. MLDG [14] firstly applies the
meta-learning method MAML [15] for domain generaliza-
tion. Compared with domain adaptation, domain general-
ization is a less investigated problem. Besides, the above
domain generalization works mainly focus on the closed-
set category-level recognition problems, where the source
and target domains share the same label space. In contrast,
our generalized face recognition problem is much more
challenging because the target classes are disjoint from the
source ones. It means that generalized face recognition is
an open-set problem rather than the closed-set problem like
MLDG [14], and we must handle the domain gap and the
disjoint label space simultaneously. One related work is
DIMN [19], but it differs from ours in both task and method.

Meta Learning. Recent meta-learning studies concen-
trate on: (i) learning a good weight initialization for fast
adaptation on a new task, such as the foundational work
MAML [15] and its variants Reptile [20], meta-transfer
learning [21], IMAML [22] and so on. (ii) learning an em-
bedding space with a well-designed classifier that can di-
rectly classify samples on a new task without fast adapta-
tion [23, 24, 25]. (iii) learning to predict the classification
parameters [26, 27] after pre-training a good feature extrac-
tor on the whole training set. These works focus on few-
shot learning, where the common setting is that the target
task has very few data points (1/5/20 shots per class). In
contrast, generalized face recognition should handle thou-
sands of classes, making it more challenging and generally
applicable. Our approach is most related to MAML [15]
that tries to learn a transferable weight initialization. How-
ever, MAML requires fast adaptation on a target task, while
our MFR does not require any model updating as target do-
mains are unseen.

3. Methology

This section describes the proposed MFR to address gen-
eralized face recognition problem. MFR consists of three
parts: (i) the domain-level sampling strategy. (ii) three
losses for optimizing multi-domain distributions to learn
domain-invariant and discriminative face representations.
(iii) the meta-optimization procedure to improve model
generalization, shown in Fig. 3. The overview is shown in
Fig. 2 and Algorithm 1.

3.1. Overview

In the training stage, we have access to N source do-
mains Dg = {D7,---,D3 | N > 1}, and each domain
D; = {(«},y%)} has its own label set. In the testing phase,
the trained model is evaluated on one or several unseen tar-
get domains, Dy = {D¥,..- DT, | M > 1}, without any
model updating. Besides, the label sets Y1 of the target do-
mains are disjoint from the label sets )s of source domains,
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Figure 2: Overview of our proposed MFR. Three source domains are presented in this figure for a demonstration. Each
symbol represents a face image for convenience. MFR consists of three parts: domain-level sampling for simulating domain
shifts, multi-domain distributions optimization to learn face representations and meta-optimization procedure to improve
model generalization. Once trained on source domains, the model can be directly deployed on target unseen domains.

thus making ours problem open-set. During training, we de-
fine a single model represented by a parametrized function
£(0) with parameters §. Our proposed MFR aims to train 6
on source domains Dg, such that it can generalize well on
target unseen domains Dy, as illustrated in Fig. 1.

3.2. Domain-level Sampling

To achieve domain generalization, we split source do-
mains into meta-train and meta-test domains during each
training iteration. Specifically, we split N source domains
Dg into N —1 domains D,,,, for meta-train and 1 target do-
main D,,,;. for meta-test, simulating the domain shift prob-
lem existed when deployed in real-world scenarios. In this
way, the model is encouraged to learn transferable knowl-
edge about how to generalize well on the unseen domains
with different distributions. We further build a meta-batch
consisting of several batches as follows: (i) we iterate on
N source domains; (ii) in the i-th iteration, Df is selected
as the meta-test domain D,,,;.; (iii) the rest ones as meta-
train domains D,,,; (iv) we randomly choose B identities
in meta-train domains and B identities in meta-test domain,
and two face images are selected for each identity, in which
one as the gallery the other one as probe. Therefore, a meta-
batch of N batches is built. Our model is then updated by
the accumulated gradients of each meta-batch. The details
are illustrated in Algorithm 1. Different from MAML [15],
our sampling is domain-level for open-set face recognition.
MLDG [14] also performs a similar sampling, but their do-
mains are randomly divided in each training iteration and
no meta-batch is built.

3.3. Optimizing Multi-domain Distributions

To aggregate back-propagated gradients within each
batch, we optimize multi-domain distributions such that the
same identities are mapped into nearby representation and
different identities are mapped apart from each other. Tradi-
tional metric losses like contrastive [28, 29] and triplet [3]
take randomly sampled pairs or triplets to build the train-
ing batches. These batches consist of lots of easy pairs or
triplets, leading to the slow convergence of training. To alle-

viate it, we propose to optimize and learn domain-invariant
and discriminative representations with three components.
The hard-pair attention loss optimizes the local distribu-
tion with hard pairs, the soft-classification loss considers the
global distribution within a batch and the domain alignment
loss learns to align domain centers.

Hard-pair Attention Loss. Hard-pair attention loss fo-
cuses on optimizing hard positive and negative pairs. A
batch of B identities are sampled and each identity con-
tains a gallery face and a probe face. We denote the in-
put as X, the gallery and probe embeddings are extracted:
F, = f(X,;0) € RP*C F, = f(X,;0) € RB*C, where
C' is the dimension length. After [, normalization on F
and F),, we can efficiently construct a similarity matrix by
computing M = FngT € RB*B. Then we use a positive
threshold 7, and negative threshold 7,, to filter out the hard
positive pairs and negative pairs: P = {i|M;; < 7,} and

N = {(4,7)|M; ; > 7,4 # j}. This operation just needs
O(B? log(B)) complexity and it can be formulated as:
Lip = 55 S NFw = Bl S IE—Fy I
P 9gi Dpi 9gi pj ’
2[P ieP 2N (i,§)EN
ey

where P is indices of hard positive pairs determined by 7,
N is indices of hard negative pairs determined by 7,,.

Soft-classification Loss. Hard-pair attention loss only
concentrates on hard pairs and tends to converge to a lo-
cal optimum. To alleviate it, we introduce a specific soft-
classification loss to perform classification within a batch.
The loss is formulated as:

B
1
Las=55 Z; (CEyi, 5+ Fy,WT) + CE(yi s - F,,W7)).
2

where y; = i indicates the i-th identity, F,,, W” or F, W7
is the logit of i-th identity and s is a fixed scaling factor. W
is initialized as (F, + F,)/2 € RB*C and each row of W
is [ normalized.
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Figure 3: Overview of the meta-optimization procedure in
a meta-batch. Given three source domains D; 7 3, a meta
batch contains three meta-train/meta-test divisions: Dj 5 /
D1, D1,3/ Da, Dy,2 / Ds. Each division contributes a gra-
dient from meta-train and a meta-gradient from meta-test.
The model is finally updated towards a direction that per-
forms well on both meta-train and meta-test domains by ac-
cumulating all the gradients and meta-gradients.

Domain Alignment Loss. We find negative pairs across
meta-train domains tend to be easier than within domains.
By adding a domain alignment regularization to make the
embeddings domain-invariant, we can reduce domain gap
of different meta-train domains. Besides, negative pairs
across meta-train domains become harder, which is bene-
ficial to learn more discriminative representations. To per-
form domain alignment, we make the mean embeddings of
multiple meta-train domains close to each other. Specifi-
cally, we first calculate the embedding center of all mean
embeddings of meta-train domains, then optimize the dis-
crepancies between all mean embeddings and this embed-
ding center. The domain alignment loss is only applied on
meta-train domains, as meta-test has only one domain. The
loss is formulated as:

B
1 A .
¢ =3 ((Fg7 + F)/2),
i=1

n

1
Cmtr = g : Cj, (3)
Jj=1
1 n
Laa= 3 Dl —emalf
j:

where F,, F},, are normalized embeddings, c; is the mean
embedding within a batch sampled from domain Dy, ¢4, 18
the embedding center of all mean embeddings of meta-train
domains, n is the number of meta-train domains and s is
the scaling factor. In meta-optimization, we will adaptively
utilize the back-propagated signals from these three losses
to improve the model generalization.

3.4. Meta-optimization

This section describes how the model is optimized to im-
prove model generalization. The whole meta-optimization
procedure is summarized in Algorithm 1 and illustrated in
Fig. 3.

Meta-train. Based on domain-level sampling, during
each batch within a meta-batch, we sample N — 1 source
domains D,,,;,» and B pairs of images X's from D,,;,-. Then
we conduct the proposed losses in each batch as follows:

Ls = Lyp(Xs;0) + Lois(Xs30) + Laa(Xs50), (4

where 6 represents the model parameters. The model is next
updated by gradient Vy as: 6/ = 6 — aVyLg(6). This
update step is similar to the conventional metric learning.

Meta-test. In each batch, the model is also tested on the
meta-test domain D,,;.. This testing procedure simulates
the evaluating on an unseen domain with a different dis-
tribution, so as to make the the model to learn to generalize
across domains. We also sample B pairs of images X from
the meta-test domain D,,,;.. Then the loss is conducted on
the updated parameters 6 as below:

L1 = Lpp(Xr;0') + Logs(Xp30'). &)

Summary. To optimize the meta-train and meta-test si-
multaneously, the final MFR objective is:

argemin YLs(0) + (1 — ) Lr(0 — als(8)), (6)

where « is the meta-train step-size and 7y balances meta-
train and meta-test. This objective can be understood as:
optimize the model parameters, such that after updating
on the meta-train domains, the model also performs well
on the meta-test domain. From another perspective, the
second term of Eqn. 6 serves as an extra regularization to
update the model with high order gradients, and we call
it meta-gradients. For example, given three source do-
mains Dg = {Dj, D3, D3}, a meta-batch consists of three
meta-train/meta-test divisions: Dy, D3 /D1, D1, D3 /D5 and
D1,Dy/Ds. For each division or batch, a gradient and a
meta-gradient are back-propagated on meta-train and meta-
test, respectively. By accumulating all the gradients and
meta-gradients in the meta-batch, the model is finally op-
timized to perform well on both meta-train and meta-test
domains. Fig. 3 illustrates how the gradients and meta-
gradients flow on the computation graph.

4. Experiments

To evaluate our proposed MFR for generalized face
recognition problem, we conduct several experiments on
two proposed benchmarks.

6166



Algorithm 1: MFR for generalized face recogni-
tion problem.

Input: Source (training) domains
Ds ={D1,D3,--- ,Dn}.
Init: A pre-trained model f () parametrized by 6,
hyperparameters «, (3, v and batch-size of B.
1 for ite in max_iterations do
2 Init the gradient gy as O;
// For a meta-batch
3 for each D, ;. in Dg do
// For a batch
4 Sampling remaining domains as D,,¢,;
Meta-train:
Sampling B paired images Xg from B
identities of meta-train domains D,,,4,;
Ls=Lpp(Xs;0)+Lers(Xs;0)+Laa(Xs30);

8 Update model parameters by:
0'=0—aVyLs(0);

9 Meta-test:

10 Sampling B paired images X1 from B
identities of the meta-test domain D,,,;;

1 LT - l:hp(XT; 9/) + ‘C(ZlS(XT; 0/);

12 Gradient aggregation:

13 9o < 9o +vVeLs + (1 —v)VoLr;

14 end

15 Meta-optimization:
16 Update 6 + 6 — %gg by SGD;
17 end

4.1. GFR Benchmark and Protocols

Generalized face recognition has not attracted much at-
tention and we do not have a common protocol for eval-
uation, thus we introduce two well-designed benchmarks
to evaluate the generalization of a model. One benchmark
is for crossing race evaluation named GFR-R and another
one is crossing facial variety named GFR-V. We use variety
here to emphasize that there is a large gap between source
domains and target unseen domains on GFR-V.

In a real-world scenario, a large-scale base dataset like
MS-Celeb [13] is usually available for pre-training, but
the model may generalize poorly on a new domain with
a different distribution. To simulate it, we use MS-Celeb
as the base dataset. RFW [35] is originally proposed to
study the racial bias in face recognition and it labels four
racial datasets (Caucasian, Asian, African, Indian) from
MS-Celeb. We choose to select these four datasets as our
four racial domains. Note that RFW [35] overlaps MS-
Celeb [13], we remove all the overlapped identities from
MS-Celeb according to the identity keyword, thus building

our base dataset named MS-Celeb-NR!, which means MS-
Celeb without RFW. MS-Celeb-NR can be regarded as an
independent base dataset of four racial ones.

GFR-R. Each race has about 2K~3K identities. We
randomly choose 1K identities for testing and the remain-
ing 1K~2K identities for training. The dataset details are
shown in Table 1. In our experiment setting, each race is
regarded as one domain. We randomly select three domains
in four as source domains and and the rest one as the testing
domain, which is not accessible in training. Therefore, we
build four sub-protocols for GFR-R, shown in Table 2.

GFR-V. The GFR-V benchmark is for crossing facial va-
riety evaluation, which is a harder setting and can better re-
flect the generalization ability of a model. As is shown in
Table 2, four racial datasets (Caucasian, Asian, African, In-
dian) are treated as source domains, and five datasets are
as target domains. Specifically, the target datasets include
CACD-VS [30], CASIA NIR-VIS 2.0 [31], MultiPIE [32],
MeGlass [33], Public-IvS [34]. For CASIA NIR-VIS 2.0,
we follow the standard protocol in View 2 evaluation [31]
and we report the average value of 10 folds. For Me-
Glass and Public-IvS, we follow the standard testing pro-
tocols [34, 33]. For CACD-VS, in addition to the standard
protocol [30], we use the provided 2,000 positive cross-age
image pairs and split them into gallery and probe for our
ROC/Rank-1 evaluation. For Multi-PIE, we select 337 iden-
tities and each identity contains about 3~4 frontal gallery
images and 3~4 probe images with the 45° view.

Benchmark Protocols. For each image, the features
from both the original image and the flipped one are ex-
tracted then concatenated as the final representation. The
score is measured by the cosine distance of two representa-
tions. For performance evaluation, we use the receiver oper-
ating characteristic (ROC) curve and Rank-1 accuracy. For
ROC, we report the verification rate (VR) at low false ac-
ceptance rate (FAR) like 1%, 0.1% and 0.01%. For Rank-1
evaluation, each probe image is matched to all gallery im-
ages, if the top-1 result is within the same identity, it is cor-
rect.

4.2. Implementation Details

Our experiments are based on PyTorch [37]. The ran-
dom seed is set to a fixed value 2019 in comparative exper-
iments for fair comparisons. We use a 28-layer ResNet as
our backbone, but with a channel-number multiplier of 0.5.
Our backbone has only 128.7M FLOPs and 4.64M param-
eters, which is relatively light-weighted. The dimension of
the output embedding is 256. The model is pre-trained on
MS-Celeb-NR with CosFace [38]. During training, all faces
are cropped and resized to 120x120. The inputs are then
normalized by subtracting 127.5 and being divided by 128.
The meta-train step-size «, the meta optimization step-size

'We will release the list of MS-Celeb-NR.
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#Test IDs #Test images

Facial Variety Dataset #Train IDs  #Train #Gallery IDs #Probe IDs #Gallery images #Probe images

Race Caucasian 1,957 6,757 1,000 1,000 1,000 1,000
Race Asian 1,492 5,784 1,000 1,000 1,000 1,000
Race African 1,995 6,938 1,000 1,000 1,000 1,000
Race Indian 1,984 6,857 1,000 1,000 1,000 1,000
Age CACD-VS [30] - - 2,000 2,000 2,000 2,000
Tllumination ~ CASIA NIR-VIS 2.0 [31] - - 358 363 358 6,208
Pose MultiPIE [32] - - 337 337 1,184 1,181
Occlusion MeGlass [33] - - 1,710 1,710 3,420 3,420

Heterogeneity Public-IvS [34] - - 1,262 1,262 1,262 4,241

Table 1: The statistics of all involved datasets. CASIA NIR-VIS 2.0 has 10 folds and the first fold is shown. The other folds

own similar statistics.

Protocol Source Domains  Target Domain(s)
Caucasian
1 Asian Indian
African
Caucasian
I Asian African
GFR-R Indian
Caucasian
it African Asian
Indian
Asian
v African Caucasian
Indian
Caucasian CACD-VS
Asian CASIA NIR-VIS 2.0
GFR-V African MultiPIE
Indian MeGlass
Public-IvS

Table 2: The GFR-R and GFR-V benchmarks. Source do-
mains are for training, target domains are for evaluation and
are unseen during training.

VR (%)

Protocol Method FAR=1% FAR=0.1% FAR=001% Rnk-1(%)
Base 94 822 64.65 80.3
Base-Agg 94.1 80.9 65.3 81
Base-FT md. 62.5 39 21.05 393
((;IIF]E::.)I Base-FT imp. [36] 87 69.9 512 69.6
MLDG [14] 942 83 66.3 805
MEFR (Ours) 95.4 86.1 714 83.1
Base 916 745 554 73.1
Base-Agg 90.5 74.8 56.3 74
. Base-FT rnd. 26.2 10.9 35 21
((’;':m':l:; Base-FT imp. [36] 787 56.6 3645 579
MLDG [14] 919 748 557 738
MFR (Ours) 923 79.4 60.8 75.2
Base 91.89 77.98 60.86 75.98
Base-Agg 91.49 78.08 50.41 76.28
Base-FT md. 40.44 17.32 767 27.53
G(F/i'ifnl)n Base-FT imp. [36]  80.58 5756 39.79 61.86
; MLDG [14] 92.29 78.28 60.3 76.68
MEFR (Ours) 93.49 80.7 62.56 78.68
Base 96.6 89.6 786 86.6
Base-Agg 97 88.1 79.1 86.8
Base-FT md. 61.1 36.2 18.9 36.7
(gfif:iﬂ) Base-FTimp. [36] 915 782 63.4 76.8
MLDG [14] 96.8 89.6 79.15 863
MEFR (Ours) 98.2 929 8L.1 88.9

Table 3: Comparative results of the GFR-R benchmark.
rnd. means random initializing the classification weight
template, imp. is weight-imprinted.

B, the weight v balancing meta-train and meta-test loss are
initialized to 0.0004, 0.0004, 0.5, respectively. Batch-size
B is set to 128 and the scaling factor s of both the soft-
classification loss and domain alignment loss are set to 64.
The step-size a and 3 are decayed with every 1K steps and
the decay rate is 0.5. The positive threshold 7, and nega-
tive threshold 7,, are initialized to 0.3, 0.04 and are updated
as 7, = 0.3+ 0.1n and 7, = 0.04/0.5", where n is the
decayed number. For meta-optimization, we use SGD to
optimize the network with the weight decay of 0.0005 and
momentum of 0.9.

4.3. GFR-R Comparisons

Settings. We compare our model with several baselines,
including the base model and several domain aggregation
baselines. To further compare our method with other do-
main generalization methods, we adapt MLDG [14] to an
open-set setting, so that it can be applied in our proto-
cols. The results are shown in Table 3. For four proto-
cols in GFR-R, we report the VRs at low FAR 1%, 0.1%,
0.01%, and the Rank-1 accuracy. Specifically, our com-
parisons include: (i) Base: the model pre-trained only on
MS-Celeb-NR using CosFace [38]. Note that MS-Celeb-
NR has no overlapped identities with four racial datasets
(Caucasian, Asian, African and Indian) and can be consid-
ered as an independent dataset. (ii) Base-Agg: the model
trained on MS-Celeb-NR and the aggregation of source do-
mains using CosFace [38]. Take GFR-R-I as an example,
Base-Agg is trained on MS-Celeb-NR and three source do-
mains Caucasian, Asian, African jointly. This is for the
fair comparison with our MFR, where the same training
datasets are involved. (iii) Base-FT rnd.: the base model
further fine-tuned on the aggregation of source domains.
The classification template of the last FC-layer is randomly
initialized. (iv) Base-FT imp.: the base model further fine-
tuned on the aggregation of source domains, but the classi-
fication template is initialized as the mean of embeddings
of the corresponding identities. It is refined from weight-
imprinted [36]. (v) MLDG: MLDG [14] adapted for gener-
alized face recognition problem.

Results. From the results in Table 3, the following obser-
vations can be made: (i) Overall, our method achieves the
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best result on four GFR-R protocols among all compared
settings and methods. (ii) The base model pre-trained on
MS-Celeb-NR is strong, but not generalizes well for target
domains, especially for Indian, African, Asian. The rea-
son may be that MS-Celeb-NR is occupied by Caucasian
people. (iii) Jointly training on MS-Celeb-NR and source
domains performs slightly better than the base model, but
is still not comparable to our MFR method. (iv) The per-
formance of Base-FT rnd. declines dramatically and we
attribute it to over-fitting on source domains. Weight-
imprinted (Base-FT imp.) can reduce such over-fitting to
some degree, but its performance is still lower than the base
model. (v) MLDG [14], which is originally designed for
closed-set and category-level recognition problems, fail to
compete with our method on the open-set generalized face
recognition problem.

GFR-V VR (%)
(CACD-VS) FAR=001% FAR=0.001% Renk-1(%)  Ace. AUC.
Base 96.55 92.55 96.85 9935  99.53
Base-Agg 96.75 92.98 97.15 9942 99.6
MLDG [14] 96.75 92.9 97.25 99.45  99.57
LE-CNNs [39] - - - 985 993
Human, Voting [40] - - - 94.2 99
OE-CNNs [41] - - - 992 995
AIM+CAFR [42] . . . 99.76 -
MEFR (Ours) 97.25 94.05 97.8 9978 99.81

Table 4: Comparative results on CACD-VS.

GFR-V VR (%) Ranke1(%)
CASIA NIR-VIS 2.0 “FAR=1% FAR=0.1% FAR=0.01%

Base 97.8 89.89 69.27 93.18
Base-Agg 98.31 9047 7135 94.29
MLDG [14] 98.28 90.44 69.32 93.56
IDR [43] 98.9 95.7 - 97.3
WCNN [44] 99.4 97.6 - 98.4
MFR (Ours) 99.32 95.97 81.92 96.92

Table 5: Comparative results on CASIA NIR-VIS 2.0. The
highest two results are highlighted.

GFR-V VR (%)

(Multi-PIE) “FAR=0.1% FAR=0.01% TFAR=0,001% Rank-1(%)
Base 99.92 98.83 61.54 99.75
Base-Agg 99.92 98.96 68.49 99.82
MLDG [14] 99.84 98.87 62.95 99.83
MFR (Ours) 100 99.96 74.54 99.92

Table 6: Comparative results on MultiPIE.

GFR-V VR (%)

(MeGlass) ~FAR=0.01% TFAR=0.001% FAR=0.0001% Rank-1(%)
Base 85.92 71.96 535 976
Base-Agg 86.77 735 54.96 97.60
MLDG [ 14] 85.54 69.23 4932 97.81
Face Syn. [33]  90.14 80.32 6692 96.73
MFR (Ours)  90.79 80.86 66.15 98.57

Table 7: Comparative results on MeGlass. The highest two
results are highlighted.

GFR-V VR (%)
(Public-IvS) FAR=0.1% FAR=0.01% FAR=0.001% Rank-1 (%)

Base 94.38 86.71 74.83 92.74
Base-Agg 94.24 87.1 74.5 92.85
MLDG [14] 94.96 87.35 75.54 93.3

Contrastive [29] 96.52 91.71 84.54 -

LBL [34] 98.83 97.21 93.62 -
MFR (Ours) 96.66 92.96 85.28 95.82

Table 8: Comparative results on Public-IvS. The highest
two results are highlighted.

Method Base Base-Agg MLDG[!4] MFR (Ours)
LFW  99.57 99.60 99.43 99.77

Table 9: Comparative results on LFW.
4.4. GFR-V Comparisons

The GFR-V benchmark is for crossing facial variety
evaluation, which can better reflect model generalization.

Settings. We compare our model with two strong base-
lines Base, Base-Agg, an adapted MLDG [14] and other
competitors if existed. Since the standard protocols differ
among five target domains, we show them separately in Ta-
ble 4,5, 6,7, 8.

CACD-VS. CACD-VS [30] is for cross-age evaluation,
where each pair of images contain a young face and an old
one. We report ROC/Rank-1 as well as the standard proto-
col provided. Other competitors are only evaluated on the
standard protocol. The results in Table 4 show that our MFR
not only beats the baselines but also the competitors, which
use cross-age datasets for training.

CASIA NIR-VIS 2.0. In CASIA NIR-VIS 2.0 [31],
gallery images are collected under visible lighting, while
the probe one is under near infrared lighting, thus the
modality gap is huge. Table 5 shows: (i) we achieve great
performance improvements from 89.89% (69.27%) of Base
to 95.97% (81.92%) when FAR=0.1% (0.01%). (ii) even
with such a huge modality gap, our performance is com-
parable to several CNN-based methods [43, 44], which use
MS-Celeb for pre-training and the target domain NIR-VIS
dataset for fine-tuning. In comparison, our model has not
seen any NIR samples during training.

Multi-PIE. We compare our model with two baselines
and MLDG for cross-pose evaluation using Multi-PIE. Ta-
ble 6 validates the improvements of our MFR over baselines
and MLDG.

MeGlass. MeGlass [33] focuses on the effect of eyeglass
occlusion for face recognition. We select the hardest IV
protocol for evaluation. As shown in Table 7, our method
promotes the performance from 71.96% (53.5%) on Base
to 80.86% (66.15%) when at a low FAR 0.001%, which is
even slightly better than [33], which synthesizes wearing-
eyeglass image for the whole MS-Celeb for training.

Public-IvS. Public-IvS [34] is a testbed for ID vs. Spot
(IvS) verification. Compared to Base and Base-Agg, our
method greatly improves the generalization performance.
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The other two competitors are all pre-trained on MS-Celeb
and fine-tuned on CASIA-IvS, which has more than 2 mil-
lion identities and each identity has one ID and Spot face.
Even so, our method still performs slightly better than Con-
trastive [29].

LFW. We perform an extensive evaluation on LFW [9],
shown in Table. 9. The results demonstrate that our method
also generalizes better than baselines on a similar target do-
main.

The above results show that our method achieves great
improvement than baselines, and the performance is com-
petitive to the best supervised / non-generalization methods.
For a real-world face recognition application, our method is
the first choice because it generalizes well on all target do-

=0.01%)

VR (%) (FAR

83.25
. 83.00
& 8250

82.25

0.01%)

VR (%) (FAR

st sim2

rand.
Domain-level sampling

s2T1

Rank-1 (%)
@
8 8
o G

-3
&

810

SITL  SIT2  rand.  S2T1
Domain-level sampling

Figure 4: Ablation results on GFR-R I (Indian) protocol,
with different v and domain-level sampling strategies.

To achieve the first order approximation, we only need to
change (1—-)Vy Ly in Algorithm 1 to (1—+)Vg L in the

mains with competitive performances.

VR (%)
Protocol Method FAR=1% FAR=0.1% FAR=001% “onk-1(%)
wio hp. 95.1 84.5 69.2 82.2
wio cls. 953 843 69 823
((;IFgf R)I wio da. 95.2 84.9 708 827
ndian - ometa (e =0) 948 84.3 68.35 81.1
first order 95.3 85.7 70.9 82.6
Ours-full 95.4 86.1 714 83.1
wlo hp. 92 77.9 59.2 74.6
wio cls. 92.1 78.9 59.3 74.6
?:flfi'knljl wlo da. 92.1 78.6 59.4 748
A wiometa (@ =0) 919 77.6 57.75 748
first order 92 78.05 59.5 75.2
Ours-full 92.3 79.4 60.8 75.2
wlo hp. 93.39 79.9 61.56 77.78
wio cls. 93.29 80.4 62.1 78.08
GE\R;,RHI)" wio da. 93.49 79.68 61.76 77.78
St wiometa (@ =0)  92.89 79.2 60.7 77.28
first order 93.49 79.9 61.7 77.88
Ours-full 93.49 80.7 62.56 78.68
wio hp. 98.2 913 80.4 87.8
wio cls. 983 926 80.4 88.4
(gfi::i:) wlo da. 98.4 924 80.5 87.5
- w/o meta (a = 0) 97.3 91.1 79.6 87.3
first order 97.9 91.8 80.1 87.7

Ours-full

98.2

92.9

81.1

88.9

Table 10: Ablative results of the GFR-R benchmark. hp. is
the hard-pair attention loss, cls. is the soft-classification loss
and da. is the domain alignment loss on meta-train domains.

4.5. Ablation Study and Analysis

Contribution of Different Components. To evaluate
the contributions of different components, we compare our
full MFR with four degraded versions. The first three com-
ponents are the hard-pair attention loss, soft-classification
loss and domain alignment loss, which are designed for
learning domain-invariant and discriminative representa-
tions. The fourth component is the meta-gradient. If « is
set to 0 in Eqn. 6, the objective is degraded to the sum of
meta-train and meta-test and there is no meta-gradient com-
putation. Table 10 shows that each component contributes
to the performance. Among three components, the meta-
gradient is the most important one. For example, in GFR-
R I, the performance drops from 71.4% to 68.35% when
FAR=0.01% without the meta-gradient.

First Order Approximation. The meta-gradient needs
high order derivatives and is computationally expensive.
Therefore, we compare it with the first order approximation.

gradient aggregation step. From Table 10, we can see that
the performance of the first order approximation is close to
high order. Considering that the first order approximation
takes only about 82% GPU memory and 63% time (in our
setting) of the high order, the first order approximation is a
practical substitute for the high order implementation.

Impact of 4. In Eqn. 6, v is a hyperparameter weight-
ing the meta-train and meta-test losses. The ablative results
are shown in Fig. 4. A proper value 0.5 gives the best re-
sult, which indicates the meta-train and meta-test domains
should be equally learned.

Domains-level Sampling. Since domain alignment loss
cannot be applied when there is only one domain in meta-
train, we remove it for fair comparisons. For each batch,
SmTn (m,n € {(1,1),(1,2),(2,1)} ) means sampling
m domain as meta-train and another n as meta-test. rand.
means randomly choosing m domains as meta-train (m is
a random number) and remaining one as meta-test. Fig. 4
shows that the setting m = 2 and n = 1 performs best.

5. Conclusion

In this paper, we highlight generalized face recogni-
tion problem and propose a Meta Face Recognition (MFR)
method to address it. Once trained on a set of source do-
mains, the model can be directly deployed on target do-
mains without any model update. Extensive experiments on
two newly defined generalized face recognition benchmarks
validate the effectiveness of our proposed MFR. We believe
generalized face recognition problem is of great importance
for practical applications, and our work is an important av-
enue for future works.
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