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Abstract

Detecting digital face manipulation has attracted exten-

sive attention due to fake media’s potential harms to the

public. However, recent advances have been able to reduce

the forgery signals to a low magnitude. Decomposition,

which reversibly decomposes an image into several con-

stituent elements, is a promising way to highlight the hidden

forgery details. In this paper, we consider a face image

as the production of the intervention of the underlying 3D

geometry and the lighting environment, and decompose it

in a computer graphics view. Specifically, by disentangling

the face image into 3D shape, common texture, identity

texture, ambient light, and direct light, we find the devil lies

in the direct light and the identity texture. Based on this

observation, we propose to utilize facial detail, which is the

combination of direct light and identity texture, as the clue

to detect the subtle forgery patterns. Besides, we highlight

the manipulated region with a supervised attention mecha-

nism and introduce a two-stream structure to exploit both

face image and facial detail together as a multi-modality

task. Extensive experiments indicate the effectiveness of

the extra features extracted from the facial detail, and our

method achieves the state-of-the-art performance.

1. Introduction

While earlier seamless face manipulation has amazed the

public broadly, there has been a constant concern about the

potential abuse of relevant techniques. In particular, the

recent DeepFake [18] initiated the widespread public dis-

cussion among the potential harmful consequence [58] and

feasible detection solutions of counterfeit facial media [6].

In this work, we are dedicated to detecting the manip-

∗Equal contribution.
†Corresponding author.

Figure 1. In computer graphics, a face image can be decomposed

into direct light, ambient light, 3D geometry, common texture and

identity texture. We find critical clues in direct light and identity

texture, and merge them as the facial detail for forgery detection.

ulation on facial identity and expression, related to the

very popular DeepFakes (DF) [18], Face2Face (F2F) [57],

FaceSwap (FS) [34] and NeuralTextures (NT) [55], which

perform the state-of-the-art face manipulation, making it

extremely tough to reveal the sophisticated counterfeit flaws

from the image view only [46]. This situation stimulates

researchers to shift their attention to extracting forgery evi-

dence from other aspects besides the original RGB image.

Previous work [66, 14, 63, 46] has discovered that the

signals in specific frequency ranges are replaced by par-

ticular patterns during manipulation and proposes to detect

forgery by signal decomposition. The assumption is that,

by disentangling the face image, we can find more critical

clues for forgery detection from the constituent elements,

which are overlooked or hard to be forged by the ma-

nipulation methods, whose loss function mainly constrains

pixel values. For example, Zhang et al. [66] identify the

unique replications of spectra in the frequency domain due
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to the up-sampling process. Chen et al. [14] introduce

facial semantic segmentation and Discrete Fourier Trans-

form (DFT) to extract both spatial- and frequency-domain

features, respectively. However, it is difficult to decide

which range of signals contains artifacts since images are

captured by different devices, under different environments,

and even compressed with different algorithms, leading to

large frequency distribution bias across datasets. The hand-

crafted [52] and learned [46] frequency filters also easily

suffer from the generalization problem. Therefore, the

crucial problems of this topic lie in how to decompose an

image and how to identify reliable constituent elements.

This paper considers the physical decomposition where

a face image is the intervention result of its underlying 3D

geometry, albedo, and the environment lighting. Specifi-

cally, we introduce 3D Morphable Model (3DMM) [7] and

computer graphics rendering to simulate the generation of a

face image. Under Lambertian assumption, we decompose

a face image into 5 components (Fig. 1): 3D geometry,

common texture, identity texture, ambient light, and direct

light. The 3D geometry is the underlying 3D face shape,

the common texture is the albedo patterns shared by all the

people, the identity texture is the albedo patterns peculiar to

this face, the ambient light changes the face color globally,

and the direct light generates shading. We introduce the

decomposition in Sec. 3.1 in detail.

Figure 2. Samples under strong direct light. The first row is the

original faces, the second row is the corresponding fake samples,

where evident inconsistency exists in the dim region.

Intuitively, the advanced manipulation methods can well

reconstruct 3D geometry, common texture and ambient

light since we merely see incompatible facial topology, non-

face texture and weird skin color among the massive forged

images. Thus, these three elements should be normalized.

However, we detect identity texture since it is hard to be

simulated due to the rich variations across faces, leading

to specific high-frequency artifacts. Besides, we speculate

the direct light as another decisive forgery clue with the

observation on large artifacts under intense direct light,

shown in Fig. 2. By evaluating various compositions

among different components, we find that the combination

of direct light and identity texture, i.e., the facial detail in

Fig. 1(f), is the best for forgery detection.

When detecting forgery clues with neural networks, we

consider the cooperation between face image and facial

detail as a multi-modality task and propose a two-stream

Forgery-Detection-with-Facial-Detail Net (FD2Net). To

further highlight the discriminative region, we introduce

a supervised Detail-guided Attention mechanism in the

network, which employs the facial detail difference between

real and fake faces as the objective.

In summary, our contributions are: 1) we introduce 3D

decomposition into forgery detection and construct facial

detail to amplify subtle artifacts. 2) A two-stream structure

FD2Net is proposed to fuse the clues from original images

and facial details, where a supervised attention module is

introduced to highlight the discriminative region. 3) Com-

pared with the other state-of-the-art detection proposals,

our method achieves remarkable elevation on both detection

performance and generalization ability.

2. Related Work

Digital face manipulation techniques There has been

extensive research on face manipulation. Traditional meth-

ods require sophisticated editing tools, domain expertise,

and time-consuming processes [59, 61]. Classical CG-

based methods explore the correspondence among face ge-

ometry and facilitate partial/entire manipulation [56, 57, 53,

33]. Recent deep learning (DL)-based methods, especially

with GAN, have demonstrated their power on image syn-

thesis, which promotes both face swapping and synthesis

of entire fake images, making it easier to be acquired by

the public. While the advanced manipulation techniques

based on CG and DL facilitate digital face manipulation

remarkably, they exacerbate the difficulty for humans to

distinguish manipulated faces from the genuine [50].

General manipulation detection method Abiding con-

cern on potential adverse impacts promotes considerable

research on digital manipulation detection. Early methods

exploit various artifacts for general image forgery detec-

tion [45, 41, 51, 21, 2], and recent advances in Convolu-

tional Neural Network (CNN) [35] and DL promote the

learning-based methods [8, 3, 31, 68], not only revealing

innovative inter-domain artifacts of the generative mod-

el [42, 4, 66], but also substantiating the effectiveness of

simple supervised classifiers [62]. In particular, facial

forgery detection has attracted considerable attention re-

cently, which stimulates massive study according to various

forgery techniques [23, 29, 12, 47, 37, 25, 30]. There is a

large portion of methods discussing manipulation evidence

among low-/high-level features. Raja et al. [48] concern the

fusion of feature maps of the first fully connected layer from

pre-trained CNNs. Zhou et al. [67] explore steganalysis

features and propose to learn both tampering artifacts and
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local noise residual features. Afchar et al. [1] exploit the

mesoscopic properties of images, arguing that the eyes and

mouth influence the detection of Deepfake significantly.

Liu et al. [38] argue the effectiveness and robustness of

global/large texture represented by the Gram matrix. There

are also methods of transferring images to the frequency

domain to explore other forgery evidence [52, 46]. How-

ever, previous texture-based methods extract facial features

based on pixel-level images, i.e., merely concentrating

on exploring manipulation trace among face appearance.

Recently, Chen et al. [13] highlight the credit of geometry

information delivered by 3D shape and achieve remarkable

performance in spoof detection, inspiring us to fuse shape

and texture clues to find fake faces.

Lighting-based detection There is also research focus-

ing on detecting forgery evidence considering the lighting

condition. De Carvalho et al. [17] spot forgery evidence

from the inconsistency among the 2D illuminant maps of

various image segments. Peng et al. [44] propose an

optimized solution to estimate the 3D lighting environment.

However, these methods require comparison among at least

two faces in one image, which is problematic in more

common scenarios where only one face is in the image.

3. Manipulation Detection with Facial Detail

This paper regards face forgery detection beyond a pure-

ly end-to-end binary classification problem. We decompose

a face image reversibly into several 3D descriptors, i.e., 3D

shape, common texture, identity texture, ambient light and

direct light, and explore how these descriptors contribute

to the final label, investigating the best combination among

them for forgery detection.

3.1. 3D Decomposition

In computer graphics, a face image is generated by:

Isyn = Z-Buffer(S,C), (1)

where S is the 3D face mesh, as shown in Fig. 1(c), and

C is the RGB of each vertex in S. Under the Lambertian

assumption, the RGB of ith vertex is:

Ci = Amb ∗Ti + 〈ni, l〉 ·Dir ∗Ti, (2)

where the facial texture Ti = [Ri, Gi, Bi]
T is the albedo

of the ith vertex, Amb = diag(Ramb, Gamb, Bamb) is the

color of the ambient light, as shown in Fig. 1(b), ni is the

vertex normal originating from the 3D mesh, l is the light

direction, and Dir = diag(Rdir, Gdir, Bdir) is the color of

the direct light, as shown in Fig. 1(a).

Then, we assume the facial texture T as the composition

of common texture and identity texture, where the common

texture Tcom is the texture patterns shared by all the people,

as shown in Fig. 1(d), and the identity texture Tid is the

discriminative fine-grained texture containing one’s identity

information, as shown in Fig. 1(e). In this paper, we model

the common texture by the PCA texture model in Basel

Face Model (BFM) [43], and calculate the residual between

Tcom and T as the identity texture:

T = T+Bβ +Tid, (3)

where T is the mean texture, B is the principle axes of the

PCA texture model, and β is the common texture parameter.

Based on these models, any face images can be decomposed

by a series of model parameters: [S,Amb,Dir, β,Tid],
which can be obtained by optimizing the following loss:

arg min
S,Amb,Dir,β,Tid

‖I− Isyn(S,Amb,Dir,β,Tid)‖,

(4)

where I is the input face image. After 3D decomposi-

tion, the following problems are whether each component

contains forgery clues and how to combine them regard-

ing the real/fake label. Firstly, inspired by the previous

discussions on high-frequency features beneath pixel-level

texture [17, 36], we regard identity texture as a critical

forgery clue and remove the topsoil facial texture, i.e.,

the ambient light and the common texture. Secondly, by

observing the fake samples under intensive direct light, as

shown in Fig. 2, we can consistently spot artifacts due to

the large illumination difference between the source and

target faces during manipulation. Therefore, we suppose

the existence of forgery clues in the direct light. Moreover,

we emphasize the normalization of the 3D shape to make

the detector concentrate on fine-grained texture.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. The 8 inputs for forgery detection. (a) Face Image,

(b) Ambient Light + Common Texture + 3D Shape, (c) Identity

Texture + Direct Light + 3D Shape, (d) Identity Texture + 3D

Shape, (e) Face Image w/o Shape, (f) Ambient Light + Common

Texture, (g) Identity Texture + Direct Light, (h) Identity Texture.

To verify the suppositions, we conduct a fast ablation

study and propose 8 inputs for forgery detection: img,

amb+ctex+shape, itex+dir+shape, itex+shape, img w/o

shape, amb+ctex, itex+dir, itex, where amb, dir, itex, ctex
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and shape are short for ambient light, direct light, identity

texture, common texture and 3D shape, respectively, as

shown in Fig. 3, where we warp the image to the UV space

to discard the 3D shape. We generate the 8 inputs for all

the samples in Faceforensics++ [50] and train a VGG16 for

evaluation. The results are shown in Tab. 1.

input shape amb dir ctex itex AUC

In-a X X X X X 99.13

In-b X X X 50.00

In-c X X X 99.29

In-d X X 99.14

In-e X X X X 98.93

In-f X X 50.00

In-g X X 99.56

In-h X 99.27

Table 1. The AUC performance (%) on FFpp [50]. The inputs are

the compositions of 5 components, including: 3D shape (shape),

ambient light (amb), direct light (dir), common texture (ctex) and

identity texture (itex). The examples of In-a to In-h are shown in

Fig. 3. The best results are highlighted.

There are several noteworthy results in Tab. 1. Firstly,

the poor performances of In-b and In-f indicate that the

topsoil facial appearance, i.e., the ambient light and the

common texture, are easy to be faked and have little

forgery clues. Secondly, by comparing In-c and In-g or

comparing In-d and In-h, we find consistent improvements

after warping the fine-grained appearance to the UV space.

Therefore we suppose normalizing the 3D shape makes

CNN concentrate on specific face regions and simplifies

the detection task. Thirdly, by comparing In-g and In-

h, we find that direct light benefits the forgery detection

remarkably. Moreover, we find that many fake samples

that In-c identifies but In-d does not are under intense

light, verifying our assumption that current manipulation

methods cannot simulate direct light properly. In all, the 3D

shape, ambient light, and common texture have few forgery

patterns but contribute most of the pixel values, and they

should be normalized, while the weak signals of direct light

and identity texture should be highlighted due to the embed-

ded critical clues. In the following implementation, we use

facial trend to represent the group of 3D shape, ambient

light and common texture, and name the combination of

direct light and identity texture as the facial detail.

3.2. Facial Detail Generation

Based on the analysis in 3D decomposition, we aim

to normalize facial trend (the combination of 3D shape,

ambient light and common texture) and highlight facial

detail (the combination of direct light and identity texture).

A trivial method is optimizing all the parameters together as

Equ. (4) in an analysis-by-synthesis [7] manner, but it costs

too much computation. Thus, we propose an approximation

to expedite the generation of facial detail for fast inference.

We begin with the real-time generation of the 3D shape S

by the state-of-the-art 3DDFA [69, 26, 27], which achieves

0.27ms per image for 3D reconstruction on average. Then,

we keep the 3D shape S and get the ambient and direct

light by the spherical harmonic reflectance on the mean

texture. With a specialized module, we reduce the average

computation time per image from 0.86s to 0.44s compared

with the original analysis-by-synthesis method as Equ. (4).

The spherical harmonics [65], H = [h1,h2, . . . ,h9], are

a set of functions that form an orthonormal basis to rep-

resent the brightness changes due to illuminations, which

can be achieved by the combination of its first nine com-

ponents [49, 5]. Then, the face appearance under arbitrary

illumination can be represented by the linear combination

(Hγ) ·T, where T is the facial texture (vertex albedo), γ =
[γ1, γ2, . . . , γ9] is the 9-dimensional reflectance parameters

and · is the dot product. We consider γ1 · h1 as the ambient

light and [γ2 · h2, . . . , γ9 · h9] as the direct light.

In our implementation, we degrade the T to the mean

texture T for fast inference and get γ from the least squares

solution of the following equation:

I(S) = (Hγ) ·T, (5)

where I(S) are the pixels at vertex positions. Based on

the harmonic reflectance parameters, we further get the

common texture by the following linear equation:

I(S) = (Hγ). ∗ (T+Bβ), (6)

where T and B are from the PCA texture model, γ is the

reflectance parameters estimated in Equ. (5) and β is the

common texture parameters. Finally, the facial detail is:

FD = UV (I− (h1γ1). ∗ (T+Bβ),S), (7)

where FD is the facial detail and UV (I,S) is the UV

warping that transfers image pixels in I to the UV space

by the constraints of 3D mesh S. We suppose that the

facial detail highlights the forgery patterns for the forged

image, making it more suitable for the input of manipulation

detection neural networks.

4. FD2Net

We present our Forgery-Detection-with-Facial-Detail

Net (FD2Net) briefly in Fig. 4, where we adopt Xception-

Net [15] as the backbone, considering its state-of-the-art

performance on Faceforensics++ (FFpp) [50], to evaluate

the inner-dataset detection performance. Then, we merge

the two-stream structure and the attention mechanism into

it to explore the potential enhancement assisted by the

correlation among the multi-modality data and the location

of forgery clues.
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Figure 4. The overview of the Forgery-Detection-with-Facial-Detail Net (FD2Net). We introduce a two-stream structure to combine the

clues from original images and facial details. The results of the two streams are fused by three methods: (a) score fusion (SF), (b) feature

fusion (FF) and (c) halfway fusion (HF). Besides, we insert a detail-guided attention module, which is supervised by the facial detail

difference, in the middle of the backbone network.

4.1. Multi­modality Fusion with Two­stream

Although the facial detail highlights the critical clues

in fine-grained texture and shading, it may warp specific

forgery patterns and miss external face regions. Therefore,

we consider facial detail and original face image as com-

plementary clues and characterize forgery detection as a

multi-modality task, regarding facial detail and pixel-level

face image as two different modalities. To be specific, we

adopt a two-stream architecture to study the combination of

these two modalities, where each stream is equipped with

the XceptionNet [15] to detect face image and facial detail

separately. The classifier performs cooperated decisions at

the end regarding two streams’ joint representations.

We evaluate three fusion of two modalities’ representa-

tions, shown in Fig. 4. Firstly, we adopt the score fusion

(SF), which performs real/fake classification in each stream

and adding their confidences as the final score. The result is

real if the score is larger than a threshold and fake otherwise,

shown in Fig. 4(a). Secondly, we implement the feature

fusion (FF), where each stream ends with a fully-connected

(FC) layer, and their features are concatenated to a one-

dimension vector and transferred by another FC layer to

make the final decision, shown in Fig. 4(b). Finally, we

design the halfway fusion (HF) to concatenate the interme-

diate 2D feature maps for further single-stream processing,

shown in Fig. 4(c). To be specific, we convolve the two

inputs by the first half backbone, i.e., before the 7th block of

XceptionNet [15], and stack their 2D outputs as the feature

map afterward. Then we adopt the last half to process the

stacked feature in a single stream to make the final decision.

In our experiments, we find HF performs the best with

smaller parameter size, which may benefit from preserving

spatial information when fusing the local features.

4.2. Detail­guided Attention

Extensive tasks have adopted the attention mechanism

to enhance forgery detection [16]. The embedded atten-

tion module exploits more distinguishing characteristics

by positioning the plausible manipulated region, and also

strengthens the explainability of the classifiers [16, 9].

Unlike the previous methods, which either need the ground-

truth forged regions or adaptively learn the attention map by

the real/fake labels [16], we supervise our attention map by

the facial detail difference between fake and real faces.

Generally, an attention map Matt is constructed from an

intermediate feature map F by a small regression network

Matt = N (F, θatt) with θatt as its parameters. Then

the intermediate feature is refined by the attention map

F
′ = F

⊗
Sigmoid(Matt), where

⊗
denotes element-

wise multiplication. In this work, we propose a novel

approach to train the attention network θatt. When con-

structing the batches during network training, two images

are selected for each sample, one real Ireal and one fake

Ifake. The absolute of the grayscale facial detail difference

is taken as a weak supervision of the attention module:

Latt = ‖ N (F, θatt)− |FD(Ireal)− FD(Ifake)| ‖, (8)

where FD(·) is facial detail extraction, and the total loss is:

L = Lcls + Latt, (9)

where Lcls is the cross entropy loss performing real/fake

classification. During test time, we fix the network structure

and parameters to infer the attention map.

2933



Structure
FFpp DFD DFDC

AP AUC EER AP AUC EER AP AUC EER

Img 99.44 99.31 5.39 88.07 65.57 38.38 85.60 62.17 39.99

Detail 99.40 99.12 5.51 87.24 64.29 40.87 85.02 61.80 40.37

Img (× 2) 99.67 99.38 5.37 89.45 74.14 34.07 86.70 63.22 38.77

Img+Detail (SF) 97.84 92.91 11.07 83.71 72.82 36.44 81.91 62.10 47.32

Img+Detail (FF) 99.72 99.45 5.31 89.56 78.55 26.80 87.16 65.36 36.17

Img+Detail (HF) 99.42 98.73 5.63 89.61 78.65 26.03 87.31 66.09 35.46

Table 2. Test results (%) of the two-stream FD2Net and its variants on FFpp, DFD and DFDC. We adopt Average Precision (AP), Area

under the Curve (AUC) of Receiver Operating Characteristic Curve(ROC), and Equal Error Rate (EER) as the metrics in our experiments.

The “Img” is the stream detecting original images only. The “Detail” is the stream detecting facial details only. The “Img (× 2)” is the

one-stream network on original images but having the same parameter size as the two-stream structure. The SF, FF and HF refer to score

fusion, feature fusion and halfway fusion, respectively. The best results are highlighted.

5. Experiments

In this section, we introduce the datasets, experiment

setups, extensive experiment results of the ablation studies,

and comparison with previous works in sequence.

Training Dataset. Faceforensics++ (FFpp) [50] is a

benchmark dataset released recently for facilitating evalu-

ation among facial manipulation detection methods. There

are 1k original video sequences, in which 720, 140, 140
videos are used for training, validation and testing, re-

spectively. These original videos are manipulated by four

state-of-the-art face manipulation methods, i.e., DeepFakes

(DF) [18], Face2Face (F2F) [57], FaceSwap (FS) [34],

and NeuralTextures (NT) [55]. Besides, the raw video

sequences are degraded with different compression rate (0,

23, 40) to simulate the real situation [50]. We select the c23
data, considering the extensive post-processing imposed on

the original data before they go public, and sample 100
frames for each video in the experiments.

Test Datasets. We adopt the following datasets for per-

formance and generalization evaluation. 1) the testing set

of FFpp as described above. 2) The DeepFake Detection

dataset (DFD) [20] containing hundreds of original data

and thousands of manipulated data, released by Google

for promoting research on synthetic video detection. 3)
Deepfake detection challenge dataset (DFDC) [10] contain-

ing over 100k video sequences captured with over 3k paid

actors and manipulated videos covering Deepfake, GAN-

based, and non-learned methods, released recently for the

corresponding Kaggle competition1 by Facebook AI.

Implementation Details. For the facial detail generation,

we construct the 3D face shape by 3DDFA [69, 26, 27],

perform UV warping by the UV map in [22], and acquire

the common texture by fitting the PCA texture model in

Basel Face Model (BFM) [43]. For the neural network,

we introduce XceptionNet [15] as the backbone and fuse

1https://www.kaggle.com/c/deepfake-detection-challenge

the feature map after the 4th block of the middle row

of XceptionNet when implementing the halfway fusion

structure. The Adam optimizer is utilized for training with

weight decay equals to 5×10−4, β1 = 0.9, β2 = 0.999 and

batch size set to 32. The initial learning rate is 10−4, then

changed to 5×10−5 at epoch 15, to 5×10−6 at epoch 23, to

10−6 at epoch 28, and to 5×10−7 for the rest from epoch 32.

An early-stop module controls the training process’s end,

terminating the training if the loss on the validation set does

not fall for 7 consecutive epochs. In our implementation,

the total epoch is about 25.

5.1. Ablation Studies

5.1.1 Analysis of the Two-stream Network

We regard face image and facial detail as two complemen-

tary modalities and implement a two-stream network to fuse

their clues. To evaluate each modality’s performance and

the best fusion manner, we quantitatively evaluate FD2Net

without attention module in different variants: one-stream

with original images only, one-stream with facial details

only, and two-stream fused by SF, FF, and HF, respectively.

The results are listed in Tab. 2.

Firstly, the one-stream structure considering face images

or facial details achieves similar results, but worse than

that of the two-stream structure, especially in cross-data

evaluation. Secondly, the deteriorated performance of the

score fusion indicates the potential sophistication of multi-

modality clues fusion and the inflexibility of the hand-

crafted decision function. Nevertheless, the performance

on all three datasets improves jointly with the feature fu-

sion, validating the complementarity of the two modalities.

Finally, the halfway fusion further promotes the results on

DFD and DFDC by the local fusion manner, which makes

the fused features correspond to similar receptive fields. We

also find that the two-stream structure outperforms the one-

stream with double parameters, ruling out the benefit from

a larger parameter size on the performance improvement.
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Attention on Stream FFpp DFD DFDC

Img Attention Detail Attention AP AUC EER AP AUC EER AP AUC EER

99.42 98.73 5.63 89.61 78.65 26.03 87.31 66.09 35.46

X 99.45 98.73 5.62 89.65 78.71 25.94 87.58 66.51 35.33

X 99.47 98.74 5.51 89.37 78.69 26.01 87.56 66.48 35.33

X X 99.48 98.76 5.59 89.84 79.08 25.18 87.93 67.70 34.91

X(unsupervised) X(unsupervised) 99.44 98.68 5.88 88.55 78.37 27.46 87.02 65.46 37.23

Table 3. The ablation study results (%) on the Detail-guided Attention module in FD2Net. The “Img Attention” and “Detail Attention”

refer to the attention module on the image stream and detail stream, respectively. We also explore the performance without the supervised

signal by the facial detail difference and present the last row results with “unsupervised” in the bracket. The best results are highlighted.

S1 S2 FFpp DFD DFDC

Image Tex Norm Shape Norm AP AUC EER AP AUC EER AP AUC EER

X 99.46 99.47 4.48 88.14 72.51 36.77 85.64 62.28 39.56

X X 99.57 99.59 4.30 84.06 76.09 29.11 86.13 64.43 38.40

X X 99.61 99.68 4.28 85.10 76.84 27.08 87.73 66.01 38.32

X X X 99.48 98.76 5.59 89.84 79.08 25.18 87.93 67.70 34.91

Table 4. The ablation study result (%) of facial detail in FD2Net. The S1 and S2 refer to the first and the second stream in the network.

The “Tex Norm” refers to texture normalization and the “Shape Norm” refers to shape normalization. The best results are highlighted.

Besides, we tried EfficientNet [54] as the backnone, con-

sidering its remarkable performance in DFDC competition,

and our method still outperforms the state-of-the-arts with

regard to the average precision (93.82% [9] VS. 95.43%)

and robustness on DFDC (87.66% [9] VS. 87.85%).

5.1.2 Analysis of the Detail-guided Attention

To highlight the plausible manipulated region, we introduce

the detail-guided attention module between the fourth and

fifth block of the middle flow of the backbone. Based on

the two-stream network with halfway fusion, we evaluate

some of the network variants by separately deploying the

attention module on each stream and exploring whether

the supervised signal improves its effectiveness in further

discussion. Results in Tab. 3 demonstrate the improvements

of XceptionNet on all datasets with the additional attention

module, either implemented on the image or the detail

stream. The network with attention modules on both

streams performs the best. Besides, we train the attention

module indirectly from the real/fake labels, ignoring the

supervised signal by the facial detail difference, and observe

a performance drop, indicating the effectiveness of the

supervised signals on the forgery detection.

5.1.3 Ablation Study of Facial Detail in FD2Net

Although Tab. 1 has performed an extensive ablation study

on each 3D component, we further evaluate facial detail

when acting as a complementary clue in the two-stream

network. In this section, we decompose the effectiveness of

facial detail into shape normalization and texture normal-

ization, where shape normalization refers to warping the

facial pixels to the UV space, e.g., Fig. 3(e), and texture

normalization refers to decomposing and removing ambient

light and common texture in the pixel values, e.g., Fig. 3(c).

We adopt the two-stream network with both halfway fusion

and supervised attention module.

In Tab. 4, the first row is a one-stream network which

directly detects forgery from original face images without

using any facial detail information. Adding the second

stream can promote the AUC scores compared with the

primary one-stream structure, either implementing shape or

texture normalization. Furthermore, the introduction of the

facial detail, i.e., adopting the combination of shape and

texture normalization, helps the detector achieve the best

performance. These progressive improvements validate

that the proposed facial detail contributes to the forgery

detection and complements the original image.

5.2. Comparison with other methods

Some previous works [32, 19, 40, 36] indicate the poten-

tial generalization failure when detecting unseen manipula-

tion methods or datasets. In this section, we compare our

method with previous state-of-the-art methods to explore

our performance in both scenarios.

Cross-data Evaluation. Following Khodabakhsh et

al. [32], we quantitatively analyze the generalization ability

on unseen data and compare it with other methods, includ-

ing the primary XceptionNet detection method [50] and the

ensemble of EfficientNet’s variants [9]. We train the model
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Model Training dataset
DFD (HQ) DFDC

AP AUC EER AP AUC EER

Xception [50] FFpp 88.07 65.57 38.38 85.60 62.17 39.99

EfficientNetB4

Ensemble [9]
FFpp 89.35 72.82 34.86 85.71 63.03 38.86

FD2Net FFpp 89.84 79.08 25.18 87.93 67.70 34.91

Table 5. Performance (%) comparison among previous state-of-the-art methods on the unseen datasets. The best results are highlighted.

Model Training data
Acc

F2F FS

MesoInception4 [1]

F2F

84.56 56.71

VA-LogReg [39] 83.62 59.45

LAE [19] 90.34 62.51

Multi-task [40] 91.27 55.04

Face X-ray [36] 97.73 85.69

Xception + HP Filter 97.98 57.46

FD2Net 98.22 86.54

Table 6. Detection accuracy comparison (%) with previous

methods on F2F and FS in FFpp. We adopt the HQ (c23)

version data from FFpp to discuss the robustness on the unseen

manipulation technique. The best results are highlighted.

on FFpp, test it on DFD (HQ) and DFDC following the

ablation study’s configuration, and list the results in Tab. 5.

The improvement in the generalization on unseen data

demonstrates that the additional facial detail enables the

detection model to effectively extract more discriminative

and general features from fake images, even from a different

distribution of the training dataset. It is worth noting that the

extraction of facial detail is independent of any forgery data,

making it the probable reason for better generalization.

Evaluations on Different Manipulation Methods. Fol-

lowing Li et al. [36], we evaluate the robustness of our

method on the unseen manipulation methods and compare

the performance with previous methods. We introduce

the data manipulated by different methods, i.e., Face2Face

(F2F) and FaceSwap (FS) under the low compression (c23)

from FFpp, and train our approach on F2F and test it on

both F2F and FS, taking the correct prediction accuracy as

the evaluation metric. The results are listed in Tab. 6. The

proposed method achieves 98.22% on F2F and 86.54% on

FS, with a significant improvement compared to the current

state-of-the-art. The improvements mainly benefit from the

highlighted clues extracted from the facial detail and the

plausible forged regions indicated by the attention map. In

particular, some compared methods also consider comple-

mentary information from various modalities. Nguyen et

al. [40] propose sharing knowledge learned simultaneously

from images and videos to enhance the performance of the

detection on both data. Li et al. [36] explore the estimation

of the blending boundary directly from face image to

discover the possibility of decomposing an image into the

mixture of two images from different sources. Besides,

we also include signal decomposition methods in frequency

domains, introducing the three base high-pass filters in the

FAD stream in [46] to primary XceptionNet (Xception + HP

Filter). Unlike these methods, the proposed FD2Net strips

the ambient lighting and the common appearance with 3D

decomposition, exploiting the personalized ambient-free

facial detail to extract more robust discriminative features.

6. Conclusion and future work

This paper proposes a novel face forgery detection

method by the 3D decomposition of the face image. With

the 3D shape, common texture, identity texture, ambient

light, and direct light disentangled from the face image, we

find critical forgery clues in direct light and identity texture,

and propose the facial detail, which is constructed by warp-

ing image pixels to the UV space and removing the topsoil

facial texture, to highlight the subtle forgery patterns. The

clues in the facial detail and the original image are fused

by a two-stream network, FD2Net, for the final real/fake

classification. Meanwhile, an attention module supervised

by the facial detail is proposed to highlight the plausible

manipulated region. Extensive experiments demonstrate

the effectiveness and robustness of the proposed FD2Net

on the FaceForencis++ dataset. We intend to address

face analysis with 3D decomposition experimentally to

improve the model’s interpretability, which can also be

adapted to other facial classification problems, including

face recognition [28, 11], liveness detection [64, 13], age

estimation [24], etc. For example, in age estimation, we

can assume fine-grained 3D shape [60] (e.g., wrinkles,

loose skin) as an important factor. In general, our work

provides a novel direction to explore the forgery clues by

analyzing how an image is generated in physics, following

the analysis-by-synthesis idea.
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