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Abstract

Object detection is often conducted by object proposal
generation and classification sequentially. This paper han-
dles object detection in a superpixel oriented manner in-
stead of the proposal oriented. Specially, this paper takes
object detection as a multi-label superpixel labeling prob-
lem by minimizing an energy function. It uses the data cost
term to capture the appearance, smooth cost term to encode
the spatial context and label cost term to favor compact de-
tection. The data cost is learned through a convolutional
neural network and the parameters in the labeling model
are learned through a structural SVM. Compared with pro-
posal generation and classification based methods, the pro-
posed superpixel labeling method can naturally detect ob-
jects missed by proposal generation step and capture the
global image context to infer the overlapping objects.

The proposed method shows its advantage in Pascal
VOC and ImageNet. Notably, it performs better than the Im-
ageNet ILSVRC2014 winner GoogLeNet (45.0% V.S. 43.9%
in mAP) with much shallower and fewer CNNs.

1. Introduction
Object detection is a computer vision task to automat-

ically localize objects in categories of interest from im-
ages. Starting from early methods which can successfully
localize constrained object categories, such as face [42, 52]
or pedestrian [8, 11], state-of-the-art methods [15, 20] are
moving focus to the detection of varying categories with
large appearance variations, such as the twenty categories in
Pascal VOC [13] and two hundred categories in ImageNet
[43].

While numerous works have been proposed for object
detection, most of them actually transform the object detec-
tion to image classification. They first generate object pro-
posals and then classify each proposal independently by the
image classification techniques. The traditional paradigm
to get proposal [38, 52] is to use the sliding window to ex-
haustively sample about 100, 000 bounding boxes in vari-

ous scales and locations. The recently popular paradigm is
to generate about 2, 000 proposals by clustering or segmen-
tation according to low-level image cues. After that, image
classification techniques are used to classify each proposal.
The classification has achieved great advances recently, due
to the robust low level features [8, 35], sophisticated mod-
els [40, 4, 15] and convolutional neural networks (CNN)
[28, 46].

Through the transformation, the detection performance
can benefit from the advances in image classification. It
leads to the great improvement in detection of face, pedes-
trian and more general object categories in the last two
decades. However, it also results in two problems. The
first is that if an object is missed in object proposal step,
such as an object with partially occlusion or unusual aspect
ratio, the detection system would definitely miss the object.
The second is that the independent classification of propos-
als cannot incorporate the global image context, which is
very important to detect overlapped objects and distinguish
object part and object itself.

To alleviate the two problems, we believe one possible
solution is to move the focus in detection from proposals to
superpixels. The superpixels are compact and perceptually
meaningful atomic regions for images. The pixels in one su-
perpixel can be safely assumed to belong to the same object
(as long as the scale of superpixel is small enough) and su-
perpixels can be grouped together flexibly to form objects.
The interaction between objects, which is hard to model in
object level, also becomes easier in superpixel level. If we
know the label of each superpixel (e.g., it belongs to which
object in what category), then the object detection problem
becomes trivial. To this end, we conduct object detection
by labeling superpixels.

However, reliable inference of a superpixel’s label can be
very difficult, due to the ambiguity in its appearance. In this
paper, we exploit three types of information on entire image
jointly by constructing an energy function on image’s super-
pixel partition. The appearance of the superpixel is captured
by a data cost term, which is propagated from classification
result of the regions it belongs to by RCNN[20]. The spa-
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(a) sliding window (b) selective search (c) superpixel labeling (d) definition of object detection

Figure 1. Different methods for object detection. The sliding window (Fig. 1(a)) and selective search (Fig. 1(b)) based methods handle the
object detection by proposal generation and independently classification in a sequential manner. The proposed superpixel labeling method
(Fig. 1(c)) directly outputs the object masks for detection. The object detection problem itself can be taken as a pixel labeling problem
(Fig. 1(d)), where the detection is a task the predict the labels of pixels (best viewed in color).

tial context, such as whether two superpixels belong to the
same object, is captured by a smooth cost term. Since com-
pact detection is always favored, we add a label cost term to
punish the number of labels used. In this way, the detection
becomes a multi-label labeling problem with label cost, and
α-expansion based method such as [9] can be used for ap-
proximate inference. To learn the parameters in the energy
function, such as the weight of different terms, a structural
SVM is conducted to maximize the detection performance.

It should be noted that the proposed superpixel labeling
method is closer to the essential definition of object detec-
tion, which infers pixels’ labels of belonging objects. As
shown in Fig. 1, for sliding window and selective search
based method, the inference is conducted by classifying
each proposal and the heuristic method like NMS is used
to merge the classified proposals. Instead, the proposed
method infers the labels of superpixels globally to derive the
object location. One by-product of the proposed superpixel
labeling based detection is that it can output a coarse mask
for each detection, although only annotations of bounding
boxes are used for training.

The rest of the paper is organized as follows. Section
2 reviews the related work. The motivation of superpixel
based detecton and the details of the superpixel labeling
method are described in Section 3 and Section 4. In Sec-
tion 5 we show experimental results and finally in Section 6
we conclude the paper.

2. Related Work
The improvement in object detection can be divided

into proposal generation and proposal classification. Typ-
ical trends are the proposal number becomes smaller and
smaller and the classification method becomes more and
more complex.

To generate object proposals, the most direct and com-
monly used procedure is the sliding window for exhaustive
search. It is popularized by early works in pedestrian de-
tection [38] and face detection [52]. The current publicly
available state-of-the-art face detection [37, 5] and pedes-

trian detection [55, 57] methods are all based on sliding
window. The deformable part model (DPM), which is the
foundation of champion systems in Pascal VOC 2007-2011,
is also based on sliding window. The main drawback of the
sliding window is that the number of proposals can be about
O(106) for a 640×480 image, which limits the complexity
of classification due to the evaluation efficiency.

Various methods are proposed to reduce the number of
proposals. It is proven useful in [23] and popularized by
[50]. In [50], the superpixels generated by [16] are hierar-
chically grouped to form object proposals. The number of
proposals can be about 2, 000 with a recall rate of 98% on
Pascal VOC and 92% on ImageNet. Besides the small num-
ber, another advantage is that proposals at arbitrary scale
and aspect ratio can be generated, which provides more flex-
ibility for general object detection. This method is widely
used by leading object detection methods on Pascal VOC
[20] and ImageNet [46]. Recently, many methods are fur-
ther proposed to get more compact and efficient object pro-
posals, including the unsupervised approach [23, 50, 2] and
the supervised approach [1, 62, 6, 36]. An evaluation and
survey on recent object proposal method can be found in
[24].

When the proposals are fixed, detection becomes classi-
fication of each proposal. It involves how to represent the
proposal and how to classify the representation. The fea-
ture representation becomes more and more sophisticated,
from hand-crafted Haar [52] and HOG [8] to learning based
CNN [20]. Built on top of these feature representations,
carefully designed models can be incorporated. The two
popular models are the deformable part model (DPM [15])
and the bag of words (BOW [40, 4]). Given the feature
representation, classifier such as Boosting [17] and SVM
[7] are commonly used for classification. Structural SVM
[49, 26] and its latent version [60] are recently widely used
when the learning data has structural loss, such as DPM.
A recent work [21] also shows that the DPM can be inter-
preted as a CNN. The CNN based representation has shown
great advantages and has been adopted by all the leading



methods in ImageNet [43].
Previous works have noticed the problems in proposal

based detection. In [10, 41], context models are built to
learn the context information to improve the heuristic non-
maximum suppression. In [19, 48], spatial models are used
to inference the occlusion. In [15, 20], regression is used
to refine the bounding box. However, all of these methods
cannot generate new object proposals and their performance
is limited by the proposal used.

A small number of methods which do not use the pro-
posal generation and classification paradigm have been pro-
posed. The implicit shape model [32] generalizes the hough
transform to combine object shape information of training
samples for object detection and probabilistic segmentation.
This method is further improved in [18, 3]. [47, 12] use
deep neural network to simultaneously regress the detec-
tion bounding boxes and their detection scores. [22, 58, 59]
infer whether an off-the-shelf detection is right or wrong
by jointly optimize the detection and segmentation. Al-
though promising directions are provided, the performance
still does not match the leading proposal generation and
classification method, such as the RCNN [20].

Our superpixel labeling method for object detection is
related to semantic image segmentation and scene parsing.
[30] captures the object co-occurrence by the label cost term
for semantic segmentation. [31] uses the conditional ran-
dom field (CRF) to combine object detection and segmen-
tation. However, these works are designed for Pascal VOC
segmentation task, where overlapped objects of the same
category are taken as one segment. In [14], CRF is built
on top of CNN features for scene parsing. [29] proposes
to use detection annotation to infer the segmentation mask.
Very Recently, [34] releases the Microsoft COCO dataset
with object level mask, which can be used to improve our
method.

3. Motivation

We use superpixel as the atom in further operations. The
ideal superpixel partition for detection is that the superpixel
number is small enough for the efficiency in inference and
each superpixel does not span in multiple objects. In this
paper, we use the superpixel generation algorithm proposed
in [16], which well satisfies this requirement. To increase
the diversity of superpixels, four parameter settings are used
to generate superpixels, as the setting of “fast mode” sug-
gested in [50]. Throughout this paper, the four superpixel
partitions are handled independently, and we only describe
operations in one superpixel partition for the simplicity in
notation.

We compare the superpixel based method for detection
with proposal based method and pixel based method on val2

Table 1. Comparison of labeling pixels, superpixels and proposals
for object detection on ILSVRC2014 val2. The Np, Ns and Nr
are the number of pixels, superpixels and proposals, respectively.
K is the possible number of objects in one category for an image,
for example 5.

Method Recall @0.9 Recall @0.5 Solution Space
Pixel 100% 100% NK

p (∼ 1026)
Superpixel 99.8% 100% NK

s (∼ 1013)
Proposal 25.5% 91.7% Nr (∼ 2000)

of ILSVRC2014 1. If we can successfully label each pixel,
superpixel and proposal (this is to say, we know it belongs
to which object in what category), the recall rates at 0.9
and 0.5 overlap ratio 2 are listed in Tab. 1. The pixel based
method can naturally get 100% recall rate at any overlap ra-
tio, but the output space is too large and becomes infeasible.
To our best knowledge, no successful methods have been re-
ported on pixel based object detection. The proposal based
methods have very small output space, but the recall ratio
is not enough, especially when the requirement of overlap
ratio is high. The proposed superpixel based method, can
be taken as a trade-off between the pixel based method and
proposal based method. It has nearly 100% recall with a
reasonable output space.

By moving the focus from proposal to superpixel, it is
possible to achieve higher recall and larger overlap ratio,
but it also confront challenges due to the large output space.
In the following part, we show how to regularize the model
for effective inference and learning.

4. Methodology
For each superpixel generation setting, we can get a

superpixel partition of an image and denote it as P =
{p1, p2, · · · , pN}, where pi is the i-th superpixel and N
is the superpixel number. Based on the partition, we also
have a neighborhood system N , where (pi, pj) ∈ N if pi
and pj are spatially connected. The detection is conducted
by finding a label configuration for each superpixel L =
{l1, l2, · · · , lN}, where the label li ∈ {0, 1, 2, · · · ,∞}.
Here li = 0 means pi belongs to the background, li = j
means pi belongs to the j-th object and the object number
can be any non-negative integer. For the simplicity, we han-
dle each category independently at the labeling step.

For each labeling configuration, we define an energy
function E(L) to measure its cost and can find the best la-
bel configuration L∗ with the smallest cost by minimizing
E(L). Now let us think what an appropriate label configu-
ration should be. When considering each superpixel inde-
pendently, its label should be based on the fitness between
its appearance and the appearance model learned from the

1https://github.com/rbgirshick/rcnn/tree/ilsvrc.
2The overlap ratio is based on the definition in Pascal VOC [13], which

is the intersection of two regions against the union of the two regions.



(a) Input Image (b) Superpixel Partition (c) Data Cost (d) Superpixel Labeling

Figure 2. Example of the proposed superpixel labeling approach. We generate superpixel partitions for input images, and then calculate
data cost for each superpixel by propagating the score of regions. However, the data cost term is always not enough for interacting objects,
and we need smooth term and label cost term. The final superpixel labeling result is shown in Fig. 2(d).

training data of this category. Considering the smoothness
nature of objects in image, the labels of neighborhood su-
perpixels should be correlated and punished for varying la-
bels. If two neighborhood superpixels have the same la-
bel and thus be taken as the same object, their appearance
should also be correlated. Finally, the label configuration
should favor fewer labels for compact detection. To this
end, we use the following energy function,

E(L) =
∑
pi∈P

D(li, pi)+
∑

(pi,pj)∈N

V (li, lj , pi, pj)+C(L), (1)

where we always ignore the image notation I to simplify
the notation. D(li, pi) is the data cost to capture the appear-
ance of pi and assign a cost based on the conflict between
the appearance model and the label li. V (li, lj , pi, pj) is the
pairwise smooth cost defined on the neighborhood system
N . C(L) is the label cost term, which is defined on the label
configurations L and is image invariant. It is motivated by
the MDL prior and plays an important role to get objects in
detection instead of object parts. In the following part, we
show how to define the three terms in order to make them
meaningful for detection and then show the inference and
learning details.

4.1. Data Cost

The data cost for each superpixel should only be calcu-
lated by its appearance. However, appearance of a super-
pixel usually does not have enough semantic information,
considering that it may only have a small number of pixels
and corresponds to an ambiguous object part. One obser-
vation is that the regions (proposals), which are grouped
neighborhood superpixels, provide more semantic object
level information and the appearance model of regions can
be well learned from annotation of detection. To make the
superpixel data cost term more reliable, we classify regions
and then propagate their costs to superpixels.

To get scores of regions, we use the RCNN approach
proposed in [20], where output of the penultimate layer of a
CNN trained for multi-category classification is used as fea-
ture extraction. For each category, a binary SVM is trained
to distinguish object regions from the background and ob-
jects of other categories. Different CNN features can largely

affect the final performance and we leave the details in the
Section 5.2. Suppose the region set is R = {r1, · · · , rT },
and the classification score of rt by RCNN is st, we use the
sigmoid function to map it to the data cost ranging in (0, 1),

D(lt, rt) =

{
1

1+exp(−α·st) , if lt > 0
exp(−α·st)

1+exp(−α·st) , if lt = 0
(2)

where α is set to be 1.5 empirically. The costs of all labels
except 0 are the same since they indicate the region belongs
to objects of a special category. One superpixel can belong
to different regions, so that we need to pool the costs of
different regions to a single value. For each superpixel, we
use the weighted sum of T smallest costs,

D(li, pi) =

T∑
t=1

wdt ·D(lt, R(pi)t), (3)

where R(pi)t is the i-th regions pi belongs to with the t-th
smallest cost. The weight wd is learned from the training
data and T is set to be 3 empirically.

4.2. Smooth Cost
The smooth cost is used to encode the pairwise informa-

tion. For the detection task, two kinds of information are
useful. The first is that adjacent superpixels are often posi-
tively correlated and should be encouraged to have the same
label. The second is that when the two adjacent superpixels
have the same label and thus belong to the same object, they
should be similar in appearance. To this end, the pairwise
term is defined as:

V (li, lj , pi, pj) = wslVl(li, lj) + Va(li, lj , pi, pj), (4)

where the Vl(li, lj) captures the first information and the
Va(li, lj , pi, pj) captures the second information.

For the Vl(li, lj), we set it to be a boolean variable. If
li = lj and (pi, pj) ∈ N , the cost is zero, otherwise the
cost is a punishment 1. It can be denoted as δ(li 6= lj). This
term has a weight wsl .

For the Va(li, lj , pi, pj), we need a cost to measure the
appearance consistency of two neighborhood superpixels
which are assigned with the same label. In this paper, we
use the color and texture as two complementary criteria. We



calculate a histogram with 25 bins for each color channel
and then concatenate them to be a histogram with 75 bins.
For the texture, we use the SIFT histogram as suggested in
[50]. The cost is defined as,

Va(li, lj , pi, pj) = wsc(1−
∑
q

min(cqi , c
q
j)) (5)

+wst(1−
∑
q

min(tqi , t
q
j)),

where cqi and tqi are the values in the q-th bin of color
and texture histogram of superpixel pi.

∑
min(cqi , c

q
j) and∑

min(tqi , t
q
j) are the intersection distances of color and

texture, ranging in [0, 1]. The weights wsc and wst will be
learned automatically in the training step.

4.3. Label Cost
By introducing the similarity part in the smooth term,

the final labeling result may contain many labels, such as
parts of an object may have varying appearance and may
be labeled as different objects. To this end, we need a
term to favor compact detection by punishing the number
of labels. The idea is related to the minimizing description
length (MDL). In this paper, we use the following defini-
tion,

C(L) =

K∑
i=1

wli · δ(i,L), (6)

where δ(·) is an indicator function defined as,

δ(i,L) =

{
1, if i ∈ L
0, otherwise

(7)

where the weight wl will also be learned from the data. It is
always the need that the weight wi increases monotonically
with i. Here we constrain the max number of objects for
each category K to be 5 and set the weight of background
label to be 0. Note that this cost is only related to the label
configuration L and does not depend on image.

4.4. Inference and Learning

When the smooth cost term is a metric, the energy func-
tion can be solved by the extended α-expansion algorithm
with well characterized optimal bounds as proved in [9].
Unfortunately, the smooth cost term used in this paper does
not satisfy this, and we can only find the solution in a heuris-
tic manner. To get the reliable labeling result, we need a
good initialization. In this paper, we use the RCNN [20]
detection result (the details of CNN can be found in Sec-
tion 5.2) for initialization. For each detection of RCNN, we
assign labels of superpixels in this detection to the detec-
tions’ order number. The superpixel number for each par-
tition is always no more than 500 for an image, so that the
α-expansion is usually very efficient. After we get the su-
perpixel labeling configuration L∗, we simply connect su-
perpixels with the same labels and use the corresponding

bounding box as the detection result, where the score is the
average score of its superpixels. If two regions are formed
by superpixels of the same label but are not connected, we
take them as two different instances in detection. An ex-
ample of the superpixel labeling procedure can be found in
Fig. 2.

The energy function defined above has the parameters
wd, ws and wl, where ws = [wsl , wsc , wst ]. We learn
them from the training data to optimize the detection per-
formance. For each category in each image, the energy can
be rewritten as a linear form in terms of wd, ws and wl,

E(L) = wTΦ(P,L), (8)

where w is the concatenation of wd, ws and wl. Φ(P,L) is
the concatenation of the costs on the entire image, which is
defined as,

Φ(P,L) = [
∑
pi∈P

D(lt, R(pi)t)︸ ︷︷ ︸
i=1,··· ,T

,
∑

(pi,pj)∈N

δ(li 6= lj), (9)

∑
(pi,pj)∈N

(1−
∑
q

min(cqi , c
q
j)),

∑
(pi,pj)∈N

(1−
∑
q

min(tqi , t
q
j))

δ(i,L)︸ ︷︷ ︸
i=1,··· ,K

]T .

For an image Im, suppose the ground truth superpixel
labeling configuration is Lm and the labeling configuration
inferred from the energy function is L∗m. We want to find
the combination of {wd, ws, wl} that, given the image Im,
it tends to get L∗m = Lm. Given M training images, the
objective function can be defined as,

arg min
w,ξm≥0

wTw + C

M∑
m=1

ξm (10)

s.t.∀m ∈ [1,M ], ∀L′m
wTΦ(Pm,L′m)− wTΦ(Pm,Lm) ≥ l(Lm,L′m)− ξm

where wTw is the regularization term. The constraint in
Eq. 10 is specified as follows. Let us consider the m-th
image with superpixel partition Pm and its ground truth la-
bel configuration is Lm. We want the Lm to have smaller
cost than all other label configurations L′m. However, not
all the incorrect label configurations are equally bad. The
loss function l(Lm,L′m) measures how incorrect L′m is and
penalizes the slack variable ξm according to the difference
between Lm and L′m.

We decompose the loss (Lm,L′m) of superpixel labeling
configurations to object level. Given the labeling configu-
ration L′, we can naturally get the object detection config-
uration. We calculate the number of true negative and false
positive according to the Pascal VOC criterion [13] and use
it as the cost. After the loss function and inference method



are provided, the objective function defined in Eq. 10 can be
solved by a cutting plane procedure and we use the package
in [51] and refer the theory to [26].

5. Experiments
We evaluate the proposed method on ImageNet

ILSVRC2014 detection task, which is currently the most
challenging large scale detection dataset with 200 cate-
gories collected from the Internet. For the best practice,
annotation of the testing set is not publicly available and
the detection results are submitted to the testing server to
get the performance. We compare our method with current
state-of-the-art methods and then diagnose contribution of
each step. We also report the performance on the widely
used Pascal VOC 2007.

5.1. Comparison on ImageNet Detection

For the ImageNet object detection, we follow the train-
ing, validation and testing set partition in ILSVRC2014
[43]. We uses the CNNs, which are trained on the 1000
category classification data for initialization and fine-tuned
on the detection data, as the setting in [20, 50, 56, 46]. As
in [20], the proposal which overlaps a ground truth window
with at most 0.3 is taken as a negative sample. We train four
CNN models with the depth of 9, 10, 11 and 12, respec-
tively. For the four CNNs, the final convolution layer is fol-
lowed by a spatial pyramid pooling layer [27] and the output
of the penultimate layer (the dimension is 4096) is used as
the feature representation. Features of the four CNNs are
concatenated as the final feature representation and fed into
the binary linear SVM classifier. The final classification re-
sults are used to initialize the data cost term. After that, we
use the proposed energy function to infer superpixel labels
and get the detection result. We list mean average precision
of the leading methods from 2013 to 2014 on the testing
set, as well as our method, in Tab. 2. Since the number of
models used for ensemble may significantly affect the final
results, we also report the performance of single model to
fairly compare each detection method.

Our best single CNN based model has a detection mAP
of 42.5%. After ensemble of four CNNs, the mAP increases
to be 45.0%. Our method improves one times compared
with the champion in ILSVRC2013 and has already been
better than the ILSVRC2014 champion GoogLeNet. We
only use 4 CNNs while the GoogLeNet uses 7 CNNs, and
our CNNs are not as sophisticated as the GoogLeNet. Our
method shows that by carefully designing new detection
method, there exists potentials to get better detection re-
sult although the CNN is not good enough. From Tab. 2,
we find that large improvement from 2013 to 2014, mainly
comes from the adoption of RCNN framework, which was
originally proposed in [20]. Actually, all the 2014 methods
listed above use the RCNN framework. The reasons of the

Table 2. Results on the testing set of ILSVRC2014 detection task,
which are merged by mean average precision (mAP) on 200 cate-
gories. The numbers of our method are got from the testing server,
while numbers of other entries are directly from the ILSVRC2014
result page and corresponding papers. The methods marked with
∗ do not use classification data for pre-training and marked with +

only use the 2013 data.
Method single model # CNNs Combined

NEC-RegionLet [54] + 20.8 1 20.8
NYU-OverFeat [44] + - 7 24.3
UvA-Euvision [50] + 22.6 6 22.6

MSRA-SPP-Net [27] ∗ 31.8 6 35.1
NUS-NIN [33] ∗ 35.6 3 37.2

Berkeley Vision [20] 34.5 1 34.5
UvA-Euvision [50] 35.4 1 35.4
Deep Insight [56] 40.2 3 40.5

CUHK-DeepID-Net [39] 37.7 10 40.7
GoogLeNet [46] 38.0 7 43.9

Superpixel Labeling 42.5 4 45.0

5.2%

2.6%

0.9%
0.6%
1.3%

3.5%

Diagnosis Experiments on Val2

SuperPixel Labeling

Context

Model Ensemble

Better Proposal

Better Tuning

Deeper CNN

Final result
45.4% mAP

Baseline
31.4% mAP

Figure 3. Diagnosis experiments on val2 of ILSVRC2014 detec-
tion (best viewed in color).

different results are the proposals used and the features gen-
erated by different CNNs. The proposed superpixel labeling
method can be naturally incorporated with these methods
(by using them to enhance the data cost term in the energy
function) to get further improvement.

The detection performance varies a lot in 200 categories.
We show the top 24 categories and bottom 24 categories in
Tab. 5.1. Most categories of good performance are from the
nature, while some manufacture categories still have poor
performance. It is mainly because that the manufacture cat-
egories can have large aspect ratio and usually have much
occlusion. The category with the highest performance is
the butterfly with a AP of 92.7%, which is already better
than the well-explored pedestrian detection on INRIA [8]
(88.2%) and approaching that of face detection on AFW
[61] (93.7%).



top 24
butterfly 92.7 rabbit 83.9 frog 80.4 fox 75.9 snowmobile 73.9 elephant 72.8 tiger 70.4 tennis ball 68.2

volleyball 86.2 basketball 82.8 bear 78.5 skunk 75.3 scorpion 73.5 iPod 71.4 armadillo 70.0 harp 67.6
dog 85.9 bird 82.1 snowplow 77.7 zebra 74.3 turtle 73.0 red panda 70.7 antelope 68.3 whale 67.2

bottom 24
head cabbage 23.9 swimming trunks 21.3 ruler 20.9 purse 18.1 stove 16.9 lamp 14.1 microphone 12.9 horizontal bar 11.3

bookshelf 23.7 diaper 21.2 bench 20.1 pencil box 18.0 plastic bag 14.9 ski 14.0 nail 12.5 ladle 9.3
miniskirt 23.3 flute 21.2 screwdriver 19.5 water bottle 18.0 binder 14.5 eraser 12.9 spatula 11.8 backpack 6.8

Table 3. The average precision of top and bottom 24 categories by the superpixel labeling method in ILSVRC2014 testing set.

plane bicycle bird board bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mean
SS-BOW [50] 43.5 46.5 10.4 12.0 9.3 49.4 53.7 39.4 12.5 36.9 42.2 26.4 47.0 52.4 23.5 12.1 29.9 36.3 42.2 48.8 33.8
DPM v5 [15] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

RegionLet [54] 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7
RCNN [20] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5
RCNN-gt 68.8 73.6 55.6 50.1 51.7 71.1 77.0 61.3 38.5 60.4 48.5 58.9 69.0 69.2 69.2 39.0 60.0 49.6 61.2 67.2 60.0

Proposed Method 71.8 70.3 58.1 46.2 39.8 70.2 75.2 71.9 38.3 69.0 56.7 66.9 73.5 71.8 59.0 31.9 67.3 56.0 64.3 69.6 61.4
Table 4. Average-Precision of different methods on 20 categories of Pascal VOC 2007 testset.

5.2. Diagnosis Experiments

Our current system except the superpixel labeling is
based on the framework of RCNN. In this part, besides the
proposed superpixel labeling detection algorithm, we also
expose the details which significantly improve the baseline
RCNN implementation [20].

The baseline RCNN implementation3 uses a CNN with
AlexNet [28] which is trained on imageNet classification
data and fine-tuned on detection data. We independently
find that the depth of CNN plays a key role to the final per-
formance, which is in consistent with [46, 45] for classifica-
tion and [46, 56] for detection. In our experiment, directly
deepening the 7 layer AlexNet to 12 layer model can get a
5.2% mAP gain. Further improvement comes from better
model tuning, including larger mini-batch sizes and more
iterations. A cascade, which prunes many easy background
proposals, enables the classifier to focus on the most diffi-
cult and has a 0.9% improvement. It also helps to accelerate
the training and inference procedure. This observation is in
consistent with the bounding box rejection in [39]. When
multiple models are combined, a 0.6% performance gain
is obtained. Further performance gain comes from the im-
age level context. We find that simply weighted sum the
image classification score and the detection score could re-
liably improve the performance. The proposed superpixel
labeling based detection method finally brings a 3.5% im-
provement, which enables our system to perform better than
the GoogLeNet. By accumulating these techniques, we get
about 50% relative performance gain over the baseline.

Due to the limitation in time and machine (and a highly
optimized code), we only have four CNNs for model ensem-
ble, but we find that they are enough to achieve the lead-
ing performance. Empirically, better classification CNN
(which is used for fine-tuning), more fine-tuning itera-
tions and more model ensemble lead to better detection re-
sults. Currently, the CNNs used for initialization get the
13% accuracy of top 5 classification accuracy on classifi-

3publicly available in https://github.com/rbgirshick/rcnn/tree/ilsvrc

cation data with single center test, while the GoogLeNet is
about 10%. Directly changing the CNN used in this paper
to GoogLeNet could further improve the detection perfor-
mance4. We plan to release these models.

5.3. Experiments on Pascal VOC

We finally evaluate our method on Pascal VOC 2007
[13], which is a widely used benchmark for object detec-
tion. We use the “comp4” protocol since that the CNN
trained on additional ImageNet classification data is used
to initialize the CNN. To fairly compare our method with
the RCNN baseline, we use exactly the same CNN feature
extractor and the same object proposals, as in [20]. We also
add the result of “RCNN-gt”, where the ground truth bound-
ing boxes are added to the proposals and can be taken as an
upper bound of the RCNN. The standard DPM, selective
search proposal with bag-of-words classifier and RegionLet
are used for comparison. The results are listed in Tab. 4.

All the methods except the DPM in Tab. 4 use the se-
lective search for proposal generation. The performance in-
creases with better classification, from BOW, RegionLet to
CNN. An interesting observation is that when the ground
truth bounding boxes are added, the performance only has
a 1.5% improvement. It indicates that the proposals with
small overlaps, instead of the missed objects, mostly harm
the performance. Our method can reduce the influence by
exploring the global image information to more clearly infer
the overlapped objects and reduce the influence of localiza-
tion problem. It is even better than the RCNN with ground
truth by 1.4%. Similar to the observations on ImageNet, the
superpixel labeling algorithm has a 3% improvement com-
pared to the RCNN when using the same CNN feature.

The speed of our system depends on the algorithm used
to initialize scores of superpixels. In our current implemen-
tation, we use the RCNN framework with new CNN feature
extractor based on the open source software Caffe [25]. It

4In preparing the camera ready version, we find that by adding a
GoogLeNet, the mAP on val2 improves to be 48.0%.



Figure 4. Qualitative results of Superpixel Labeling based object detection on ImageNet and Pascal VOC (best viewed in color).

runs at 1fps for each 128 object proposals on a NVIDIA
Telsa K40 GPU. We note that it can be significantly accel-
erated by the spatial pyramid pooling method proposed in
[27]. Benefiting from the efficient α-expansion based graph
cut implementation in [9], the superpixel labeling procedure
is very efficient. The qualitative detection result of the pro-
posed superpixel labeling method on ImageNet and Pascal
VOC are shown in Fig. 4.

6. Conclusion
This paper proposes to handle object detection by la-

beling superpixels. Compared with the traditional proposal
generation and classification based methods, the superpixel
based method has a much larger output space and provides
more flexibility. It can alleviate the problems in proposal
based method. For example, it can infer overlapped objects
by encoding global image information. Current leading
methods, such as RCNN with very deep CNN, can be incor-

porated into the superpixel labeling by providing a strong
data cost term. The CNN used in RCNN and the parame-
ters in the energy function are learned sequentially, and we
plan to jointly learn them for further performance gain. Our
work can also give a rough mask and can be extended to se-
mantic segmentation, which is taken as a future work. We
believe our approach can also be used for other applications,
such as detection based visual tracking[53].
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using regions. In CVPR. IEEE, 2009. 2

[24] J. Hosang, R. Benenson, and B. Schiele. How good are de-
tection proposals, really? In BMVC, 2014. 2

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 7

[26] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training
of structural svms. Machine Learning, 2009. 2, 6

[27] H. Kaiming, Z. Xiangyu, R. Shaoqing, and J. Sun. Spatial
pyramid pooling in deep convolutional networks for visual
recognition. In ECCV, 2014. 6, 8

[28] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In NIPS,
2012. 1, 7

[29] D. Kuettel, M. Guillaumin, and V. Ferrari. Segmentation
propagation in imagenet. In ECCV. Springer, 2012. 3

[30] L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Graph
cut based inference with co-occurrence statistics. In ECCV.
Springer, 2010. 3
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