arXiv:1708.05234v3 [cs.CV] 3 Jan 2018

FaceBoxes: A CPU Real-time Face Detector with High Accuracy

Shifeng Zhang Xiangyu Zhu Zhen Lei*

Hailin Shi Xiaobo Wang Stan Z. Li

CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
University of Chinese Academy of Sciences, Beijing, China

{shifeng. zhang, xiangyu.zhu, zlei,hailin.shi, xiaobo.wang, szli}@nlpr .ia.ac.cn

Abstract

Although tremendous strides have been made in face de-
tection, one of the remaining open challenges is to achieve
real-time speed on the CPU as well as maintain high perfor-
mance, since effective models for face detection tend to be
computationally prohibitive. To address this challenge, we
propose a novel face detector, named FaceBoxes, with supe-
rior performance on both speed and accuracy. Specifically,
our method has a lightweight yet powerful network struc-
ture that consists of the Rapidly Digested Convolutional
Layers (RDCL) and the Multiple Scale Convolutional Lay-
ers (MSCL). The RDCL is designed to enable FaceBoxes
to achieve real-time speed on the CPU. The MSCL aims at
enriching the receptive fields and discretizing anchors over
different layers to handle faces of various scales. Besides,
we propose a new anchor densification strategy to make
different types of anchors have the same density on the
image, which significantly improves the recall rate of small
faces. As a consequence, the proposed detector runs at 20
FPS on a single CPU core and 125 FPS using a GPU for
VGA-resolution images. Moreover; the speed of FaceBoxes
is invariant to the number of faces. We comprehensively
evaluate this method and present state-of-the-art detection
performance on several face detection benchmark datasets,
including the AFW, PASCAL face, and FDDB.

1. Introduction

Face detection is one of the fundamental problems in
computer vision and pattern recognition. It plays an im-
portant role in many subsequent face-related applications,
such as face alignment [47], face recognition [48] and face
tracking [12]. With the great progress over the past few
decades, especially the breakthrough of convolutional neu-
ral network, face detection has been successfully applied in
our daily life under various scenarios.

However, there are still some tough challenges in un-
controlled face detection problem, especially for the CPU

*Corresponding author

devices. The challenges mainly come from two require-
ments for face detectors: 1) The large visual variation of
faces in the cluttered backgrounds requires face detectors to
accurately address a complicated face and non-face classi-
fication problem; 2) The large search space of possible face
positions and face sizes further imposes a time efficiency
requirement. These two requirements are conflicting, since
high-accuracy face detectors tend to be computationally
expensive. Therefore, it is one of the remaining open issues
for practical face detectors on the CPU devices to achieve
real-time speed as well as maintain high performance.

In order to meet these two conflicting requirements, face
detection has been intensely studied mainly in two ways.
The early way is based on hand-craft features. Follow-
ing the pioneering work of Viola-Jones face detector [37],
most of the early works focus on designing robust fea-
tures and training effective classifiers. Besides the cascade
structure, the deformable part model (DPM) is introduced
into face detection tasks and achieves remarkable perfor-
mance. However, these methods highly depend on non-
robust hand-craft features and optimize each component
separately, making the face detection pipeline sub-optimal.
In brief, they are efficient on the CPU but not accurate
enough against the large visual variation of faces.

The other way is based on the convolutional neural net-
work (CNN) which has achieved remarkable successes in
recent years, ranging from image classification to object
detection. Recently, CNN has been successfully introduced
into the face detection task as feature extractor in the tra-
ditional face detection framewrok [23, 41, 42]. Moreover,
some face detectors [4, 46] have inherited valid techniques
from the generic object detection methods, such as Faster
R-CNN [29]. These CNN based face detection methods
are robust to the large variation of facial appearances and
demonstrate state-of-the-art performance. But they are too
time-consuming to achieve real-time speed, especially on
the CPU devices.

These two ways have their own advantages. The for-
mer has fast speed while the latter owns high accuracy.
To perform well on both speed and accuracy, one natural

idea is to combine the advantages of these two types of
methods. Therefore, cascaded CNN based methods [16, 45]
are proposed to put features learned by CNN into cascade
framework in order to boost the performance and keep
efficient. However, there are three problems in cascaded
CNN based methods: 1) Their speed is negatively related
to the number of faces on the image. The speed would
dramatically degrade as the number of faces increases; 2)
The cascade based detectors optimize each component sep-
arately, making the training process extremely complicated
and the final model sub-optimal; 3) For the VGA-resolution
images, their runtime efficiency on the CPU is about 14
FPS, which is not fast enough to reach the real-time speed.

In this paper, inspired by the RPN in Faster R-CNN [29]
and the multi-scale mechanism in SSD [21], we develop
a state-of-the-art face detector with real-time speed on the
CPU. Specifically, we propose a novel face detector named
FaceBoxes, which only contains a single fully convolu-
tional neural network and can be trained end-to-end. The
proposed method has a lightweight yet powerful network
structure (as shown in Fig. 1) that consists of the Rapidly
Digested Convolutional Layers (RDCL) and the Multiple
Scale Convolutional Layers (MSCL). The RDCL is de-
signed to enable FaceBoxes to achieve real-time speed on
the CPU, and the MSCL aims at enriching the receptive
fields and discretizing anchors over different layers to han-
dle various scales of faces. Besides, we propose a new
anchor densification strategy to make different types of
anchors have the same density on the input image, which
significantly improves the recall rate of small faces. Conse-
quently, for VGA-resolution images, our face detector runs
at 20 FPS on a single CPU core and 125 FPS using a GPU.
More importantly, the speed of FaceBoxes is invariant to the
number of faces on the image. We comprehensively evalu-
ate this method and demonstrate state-of-the-art detection
performance on several face detection benchmark datasets,
including the AFW, PASCAL face, and FDDB.

For clarity, the main contributions of this work can be

summarized as four-fold:

* We design the Rapidly Digested Convolutional Layers
(RDCL) to enable face detection to achieve real-time
speed on the CPU;

* We introduce the Multiple Scale Convolutional Layers
(MSCL) to handle various scales of face via enriching
receptive fields and discretizing anchors over layers.

* We present a new anchor densification strategy to im-
prove the recall rate of small faces;

* We further improve the state-of-the-art performance on
the AFW, PASCAL face, and FDDB datasets.

The rest of the paper is organized as follows. Section 2
reviews the related work. Analysis of the FaceBoxes is
presented in section 3. Section 4 shows the experimental
results and section 5 concludes the paper.

2. Related work

Modern face detection approaches can be roughly di-
vided into two different categories. One is based on hand-
craft features, and the other one is built on CNN. This
section briefly reviews these two kinds of methods.

2.1. Hand-craft based methods

Previous face detection systems are mostly based on
hand-craft features. Since the seminal Viola-Jones face
detector [37] that proposes to combine Haar feature, Ad-
aboost learning and cascade inference for face detection,
many subsequent works are proposed for real-time face
detection, such as new local features [20, 40], new boosting
algorithms [3, 25] and new cascade structures [2, 18].

Besides the cascade framework, methods based on struc-
tural models progressively achieve better performance and
become more and more efficient. Some researches [38, 39,

] introduce the deformable part model (DPM) into face
detection tasks. These works use supervised parts, more
pose partition, better training or more efficient inference to
achieve remarkable detection performance.

2.2. CNN based methods

The first use of CNN for face detection can be traced
back to 1994. Vaillant et al. [36] use a trained CNN
in a sliding windows manner to detect faces. Rowley et
al. [30, 31] introduce a retinally connected neural network
for upright frontal face detection, and a “router” network
designed to estimate the orientation for rotation invariant
face detection. Garcia et al. [7] develop a neural network to
detect semi-frontal faces. Osadchy et al. [24] train a CNN
for simultaneous face detection and pose estimation. These
earlier methods can get relatively good performance only
on easy dataset.

Recent years have witnessed the advance of CNN based
face detectors. CCF [41] uses boosting on top of CNN
features for face detection. Farfade et al. [6] fine-tune CNN
model trained on 1k ImageNet classification task for face
and non-face classification task. Faceness [42] trains a
series of CNNss for facial attribute recognition to detect par-
tially occluded faces. CascadeCNN [16] develops a cascade
architecture built on CNNs with powerful discriminative
capability and high performance. Qin et al. [26] propose to
jointly train CascadeCNN to realize end-to-end optimiza-
tion. Similar to [5], MTCNN [45] proposes a multi-task
cascaded CNNs based framework for joint face detection
and alignment. UnitBox [44] introduces a new intersection-
over-union loss function. CMS-RCNN [46] uses Faster R-
CNN in face detection with body contextual information.
Convnet [19] integrates CNN with 3D face model in an end-
to-end multi-task learning framework. STN [4] proposes a
new supervised transformer network and a ROI convolution
for face detection.

Rapidly Digested Convolutional Layers i §

Multiple Scale Convolutional Layers i

CReLU CRelU
Convl Pooll Conv2 Pool2

Inceptionl H InceptlonZH InceptlonSH Conv3_1 H Conv3_2 H Conv4_1 H Conv4_2) ;

| | 7x7easa

3x3-s2 5x5x64-s2

3x3-s2 | |

1x1x128-s1 3x3x256-s2 1x1x128-s1 3x3x256-525

Input image

Anchor Associated Layer

Default Anchor

Receptive Field for Detection

Inception3

32x32. 64x64. 128x128

143x143,207x207, 271x271, 335x335,

399x399, 463x463, 527x527

Conv3_2

256 x 256

271x271,335x335, 399x399, 463x463,

527x527,591x591, 655x655

H
H Conva_2

512x512

527527, 591x591, 655655, 719x719,

783x783,847x847,911x911

w
) % 2
x % x
< = =
£ N N
FS + +
~ - -
x -~ —
N x x
i o I

v), 4 A4
{ Multi-task Loss: SoftmaxLoss + SmoothL1Loss

Figure 1. Architecture of the FaceBoxes and the detailed information table about our anchor designs.

3. FaceBoxes

This section presents our three contributions that make
the FaceBoxes accurate and efficient on the CPU devices:
the Rapidly Digested Convolutional Layers (RDCL), the
Multiple Scale Convolutional Layers (MSCL) and the an-
chor densification strategy. Finally, we introduce the asso-
ciated training methodology.

3.1. Rapidly Digested Convolutional Layers
Most of the CNN based face detection methods are usu-
ally limited by the heavy cost of time, especially on the CPU
devices. More precisely, the convolution operation for CPU
is extremely time-consuming when the size of input, kernel
and output are large. Our RDCL is designed to fast shrink
the input spatial size by suitable kernel size with reducing
the number of output channels, enabling the FaceBoxes to
reach real-time speed on the CPU devices as follows:
 Shrinking the spatial size of input: To rapidly shrink
the spatial size of input, our RDCL sets a series of large
stride sizes for its convolution and pooling layers. As
illustrated in Fig. 1, the stride size of Convl, Pooll,
Conv2 and Pool2 are 4, 2, 2 and 2, respectively. The
total stride size of RDCL is 32, which means the input
spatial size is reduced by 32 times quickly.

* Choosing suitable kernel size: The kernel size of the
first few layers in one network should be small so as to
speed up, while it is also supposed to be large enough
to alleviate the information loss brought by the spatial
size reducing. As shown in Fig. 1, to keep efficient as
well as effective, we choose 7x 7, 5x 5 and 3 x 3 kernel
size for Conv1, Conv2 and all Pool layers, respectively.

* Reducing the number of output channels: We uti-
lize the C.ReLU activation function (illustrated in
Fig. 2(a)) to reduce the number of output channels.
C.ReLU [32] is motivated from the observation in
CNN that the filters in the lower layers form pairs (i.e.,
filters with opposite phase). From this observation,
C.ReLU can double the number of output channels by
simply concatenating negated outputs before applying
ReLU. Using C.ReLU significantly increases speed
with negligible decline in accuracy.

3.2. Multiple Scale Convolutional Layers

The proposed method is based on RPN which is devel-
oped as a class-agnostic proposer in the scenario of multi-
category object detection. For the single-category detection
task (e.g., face detection), RPN is naturally a detector for
the only category concerned. However, as a stand-alone
face detector, RPN is not able to obtain competitive per-
formances. We argue that such unsatisfactory performance
comes from two aspects. Firstly, the anchors in the RPN are
only associated with the last convolutional layer whose fea-
ture and resolution are too weak to handle faces of various
sizes. Secondly, an anchor-associated layer is responsible
for detecting faces within a corresponding range of scales,
but it only has a single receptive field that can not match
different scales of faces. To solve the above two problems,
our MSCL is designed along the following two dimensions:

e Multi-scale design along the dimension of network
depth. As shown in Fig. 1, our designed MSCL con-
sists of several layers. These layers decrease in size
progressively and form the multi-scale feature maps.
Similar to [2 1], our default anchors are associated with
multi-scale feature maps (i.e., Inception3, Conv3_2
and Conv4_2). These layers, as a multi-scale design
along the dimension of network depth, discretize an-
chors over multiple layers with different resolutions to
naturally handle faces of various sizes.

e Multi-scale design along the dimension of network
width. To learn visual patterns for different scales
of faces, output features of the anchor-associated lay-
ers should correspond to various sizes of receptive
fields, which can be easily fulfilled via Inception mod-
ules [34]. The Inception module consists of multiple
convolution branches with different kernels. These
branches, as a multi-scale design along the dimension
of network width, is able to enrich the receptive fields.
As shown in Fig. 1, the first three layers in MSCL are
based on the Inception module. Fig. 2(b) illustrates our
Inception implementation, which is a cost-effective
module to capture different scales of faces.

Conv
1x1x24

|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
: Pool Conv Conv
: 3x3 1x1x24 3x3x32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Conv Conv Conv Conv
1x1x32 1x1x32 3x3x32 3x3x32

@ (b)
Figure 2. (a) The C.ReLU modules where Negation simply multi-
plies —1 to the output of Convolution. (b) The Inception modules.

3.3. Anchor densification strategy

As illustrated in Fig. 1, we impose 1:1 aspect ratio for the
default anchors (i.e., square anchor), because the face box
is approximately square. The scale of anchor for the Incep-
tion3 layer is 32, 64 and 128 pixels, for the Conv3_2 layer
and Conv4_2 layer are 256 and 512 pixels, respectively.

The tiling interval of anchor on the image is equal to
the stride size of the corresponding anchor-associated layer.
For example, the stride size of Conv3_2 is 64 pixels and its
anchor is 256 x 256, indicating that there is a 256 x 256
anchor for every 64 pixels on the input image. We define
the tiling density of anchor (i.e., Agensity) as follows:

Adensity = Ascale/Ainterval (1)

Here, A,.qe is the scale of anchor and A;,iervar 1S the
tiling interval of anchor. The tiling intervals for our default
anchors are 32, 32, 32, 64 and 128, respectively. According
to Equ. (1), the corresponding densities are 1, 2, 4, 4 and 4,
where it is obviously that there is a tiling density imbalance
problem between anchors of different scales. Comparing
with large anchors (i.e., 128 x 128, 256 x 256 and 512x 512),
small anchors (i.e., 32 x 32 and 64 x 64) are too sparse,
which results in low recall rate of small faces.

To eliminate this imbalance, we propose a new anchor
densification strategy. Specifically, to densify one type of
anchors n times, we uniformly tile A,,,mper = 1 anchors
around the center of one receptive field instead of only tiling
one at the center of this receptive field to predict. Some
examples are shown in Fig. 4. In our paper, to improve the
tiling density of the small anchor, our strategy is used to
densify the 32 x 32 anchor 4 times and the 64 x 64 anchor 2
times, which guarantees that different scales of anchor have
the same density (i.e., 4) on the image, so that various scales
of faces can match almost the same number of anchors.

| | | |
[] H |] : |] 2 times | |
| | | | | |
s ""’o,
§ Q
3
Anumber = 16, Ascate = 8 Aintervat = 2 Adensi Anumber =9, Ascate = 8, Aintorval = 8/3, Adensity =3
| | | |
e e e e B
i T — T
- ol P
i ! -1
£ - - i
b 4
i i .
- i
! |
[y s 0
i
Lo
N 13
Lo
=R e !
IR
AR
| |

Figure 3. Examples of anchor densification. For clarity, we only
densify anchors at one receptive field centre (i.e., the central black
cell), and only color the diagonal anchors.

3.4. Training

This subsection introduces the training dataset, data aug-
mentation, matching strategy, loss function, hard negative
mining, and other implementation details.

Training dataset. Our model is trained on 12,880 im-
ages of the WIDER FACE [43] training subset.

Data augmentation. Each training image is sequentially
processed by the following data augmentation strategies:

 Color distortion: Applying some photo-metric distor-
tions similar to [9].

e Random cropping: We randomly crop five square
patches from the original image: one is the biggest
square patch, and the size of the others range between
[0.3, 1] of the short size of the original image. Then we
arbitrarily select one patch for subsequent operations.

* Scale transformation: After random cropping, the se-
lected square patch is resized to 1024 x 1024.

* Horizontal flipping: The resized image is horizontally
flipped with probability of 0.5.

» Face-box filter: We keep the overlapped part of the
face box if its center is in the above processed image,
then filter out these face boxes whose height or width
is less than 20 pixels.

Matching strategy. During training, we need to deter-
mine which anchors correspond to a face bounding box. We
first match each face to the anchor with the best jaccard
overlap, and then match anchors to any face with jaccard
overlap higher than a threshold (i.e., 0.35).

Loss function. Our loss function is the same as RPN in
Faster R-CNN [29]. We adopt a 2-class softmax loss for
classification and the smooth L1 loss for regression.

Hard negative mining. After the anchor matching step,
most of the anchors are found to be negative, which intro-
duces a significant imbalance between the positive and neg-
ative examples. For faster optimization and stable training,
we sort them by the loss values and pick the top ones so that
the ratio between the negatives and positives is at most 3:1.

Other implementation details. All the parameters are
randomly initialized with the “xavier” method. We fine-
tune the resulting model using SGD with 0.9 momentum,
0.0005 weight decay and batch size 32. The maximum
number of iterations is 120k and we use 103 learning rate
for the first 80k iterations, then continue training for 20k
iterations with 10~* and 1077, respectively. Our method is
implemented in the Caffe library.

4. Experiments

In this section, we firstly introduce the runtime efficiency
of FaceBoxes, then analyze our model in an ablative way, fi-
nally evaluate it on the common face detection benchmarks.

4.1. Runtime efficiency

CNN based methods have always been accused of its
runtime efficiency. Although the existing CNN face de-
tectors can be accelerated via high-end GPUs, they are not
fast enough in most practical applications, especially CPU
based applications. As described below, our FaceBoxes is
efficient enough to meet practical requirements.

During inference, our method outputs a large number of
boxes (e.g., 8,525 boxes for a VGA-resolution image). We
first filter out most boxes by a confidence threshold of 0.05
and keep the top 400 boxes before applying NMS, then we
perform NMS with jaccard overlap of 0.3 and keep the top
200 boxes. We measure the speed using Titan X (Pascal)
and cuDNN vb5.1 with Intel Xeon E5-2660v3@2.60GHz.
As listed in Tab. 1, comparing with recent CNN-based
methods, our FaceBoxes can run at 20 FPS on the CPU with
state-of-the-art accuracy. Besides, our method can run at
125 FPS using a single GPU and has only 4.1MB in size.

Approach CPU-model mAP(%) FPS
ACF [40] i7-3770@3.40 85.2 20
CasCNN [16] E5-2620@2.00 85.7 14
FaceCraft [26] N/A 90.8 10
STN [4] i7-4770K@3.50 91.5 10
MTCNN [45] N/A@2.60 94.4 16
Ours E5-2660v3@2.60 96.0 20

Table 1. Overall CPU inference time and mAP compared on dif-
ferent methods. The FPS is for VGA-resolution images on CPU
and the mAP means the true positive rate at 1000 false positives
on FDDB. Notably, for STN [4], its mAP is the true positive rate
at 179 false positives and with ROI convolution, its FPS can be
accelerated to 30 with 0.6% recall rate drop.

4.2. Model analysis

We carried out extensive ablation experiments on the
FDDB dataset to analyze our model. Comparing with AFW
and PASCAL face, FDDB is much more difficult so that
analyzing our model on FDDB is convincing. For all the
experiments, we use the same settings, except for specified
changes to the components.

Ablative Setting. To better understand FaceBoxes, we
ablate each component one after another to examine how
each proposed component affects the final performance. 1)
Firstly, we ablate the anchor densification strategy. 2) Then,
we replace MSCL with three convolutional layers, which all
have 3 x 3 kernel size and whose output number is the same
as the first three Inception modules of MSCL. Meantime,
we only associate the anchors with the last convolutional
layer. 3) Finally, we take the place of C.ReLU with ReLU
in RDCL. The ablative results are listed in Tab. 2 and some
promising conclusions can be summed up as follows:

Contribution FaceBoxes
RDCL X
MSCL X X
Strategy X X X

Accuracy (mAP) | 96.0 94.9 93.9 94.0
Speed (ms) 5098 4827 48.23 67.48

Table 2. Ablative results of the FaceBoxes on FDDB dataset. Ac-
curacy (mAP) means the true positive rate at 1000 false positives.
Speed (ms) is for the VGA-resolution images on the CPU.

Anchor densification strategy is crucial. Our anchor
densification strategy is used to increase the density of small
anchors (i.e., 32 x 32 and 64 x 64) in order to improve
the recall rate of small faces. From the results listed in
Tab. 2, we can see that the mAP on FDDB is reduced
from 96.0% to 94.9% after ablating the anchor densification
strategy. The sharp decline (i.e., 1.1%) demonstrates the
effectiveness of the proposed anchor densification strategy.

MSCL is better. The comparison between the second
and third columns in Tab. 2 indicates that MSCL effectively
increases the mAP by 1.0%, owning to the diverse receptive
fields and the multi-scale anchor tiling mechanism.

RDCL is efficient and accuracy-preserving. The de-
sign of RDCL enables our FaceBoxes to achieve real-time
speed on the CPU. As reported in Tab. 2, RDCL leads to
a negligible decline on accuracy but a significant improve-
ment on speed. Specifically, the FDDB mAP decreases by
0.1% in return for the about 19.3ms speed improvement.

4.3. Evaluation on benchmark

We evaluate the FaceBoxes on the common face detec-
tion benchmark datasets, including Annotated Faces in the
Wild (AFW), PASCAL Face, and Face Detection Data Set
and Benchmark (FDDB).

AFW dataset [49]. It has 205 images with 473 faces.
We evaluate FaceBoxes against the well-known works [4,
20, 22, 33, 39, 42, 49] and commercial face detectors (e.g.,
Face.com, Face++ and Picasa). As illustrated in Fig.4,
our FaceBoxes outperforms all others by a large margin.
Fig.7(a) shows some qualitative results on the AFW dataset.

Ours (AP 98.91)
STN (AP 98.35)
DPM (AP 97.21)
Faceness (AP 97.20)
HeadHunter (AP 97.14)
SquaresChnFtrs-5 (AP 95.24)
Structured Models (AP 95.19)
NPD (AP 90.23)

Shen et al. (AP 89.03)

= TSM (AP 87.99)

®-® Face++

@@ Picasa

®-® Face.com

Precision
1

0.0 L
0.70 0.75 0.80 0.85 0.90 0.95 1.00

Recall

Figure 4. Precision-recall curves on AFW dataset.

PASCAL face dataset [39]. It is collected from the
test set of PASCAL person layout dataset, consisting of
1335 faces with large face appearance and pose variations
from 851 images. Fig.5 shows the precision-recall curves
on this dataset. Our method significantly outperforms all
other methods [4, 11, 22, 39, 42, 49] and commercial face
detectors (e.g., SkyBiometry, Face++ and Picasa). Fig.7(b)
shows some qualitative results on the PASCAL face dataset.

ours (AP 96.30)

STN (AP 94.10)

Faceness (AP 92.11)

DPM (AP 90.29)

HeadHunter (AP 89.63)
SquaresChnFtrs-5 (AP 85.57)
Structured Models (AP 83.87)
TSM (AP 76.35)

Sky Biometry (AP 68.57)
OpenCV (AP 61.09)

W.S. Boosting (AP 59.72)
®-® Face++

®-o Picasa

Precision
i

0.0
0.0 0.2 0.4 0.6 0.8 10

Recall

Figure 5. Precision-recall curves on PASCAL face dataset.

FDDB dataset [10]. It has 5, 171 faces in 2, 845 images
taken from news articles on Yahoo websites. FDDB adopts
the bounding ellipse, while our FaceBoxes outputs rectan-
gle bounding box. This inconsistency has a great impact to
the continuous score. For a more fair comparison under the
continuous score evaluation, we train an elliptical regressor
to transform our predicted bounding boxes to bounding
ellipses. We evaluate our face detector on FDDB against the
other methods [1, 6, 8, 13, 14, 15,17, 19, 20, 23, 27, 28, 35,
42,44, 45]. The results are shown in Fig. 6(a) and Fig.6(b).
Our FaceBoxes achieves the state-of-the-art performance

and outperforms all others by a large margin on discontin-
uous and continuous ROC curves. These results indicate
that our FaceBoxes can robustly detect unconstrained faces.
Fig.7(c) shows some qualitative results on the FDDB.

1.00

0.95

0.90 |

0.85

0.80

0.75

True positive rate

ours (0.960) Joint Cascade (0.863)
0.70 — UnitBox (0.951) — CCF (0.859)
— Zhangetal (0.944) — CascadeCNN (0.857)
LDCF+ (0.921) ACF-multiscale (0.852)
0.65 —— DP2MFD (0.913) — Yanetal. (0.852)
Faceness (0.903) ~—— MultiresHPM (0.851)
— Conv3D (0.901) — Boosted Exemplar (0.848)
0.60 —— Hyperface (0.901) — DDFD (0.840)
FastCNN (0.900) — SURF-multiview (0.837)
0.55 — Barbu et al. (0.886) NPDFace (0.817)
HeadHunter (0.871) ~ — IPEP-Adapt (0.809)
Kumar et al. (0.864)
0.50 . L .
0 200 400 600 800 1000

False positives

(a) Discontinuous ROC curves

True positive rate

0.4 = Ours (0.829) — DP2MFD (0.672)
— Conv3D (0.759) ~—— DDFD (0.669)
— Joint Cascade (0.748) ~ — CascadeCNN (0.668)
03 MultiresHPM (0.747) ~— Kumar et al. (0.654)
Faceness (0.723) ~— ACF-multiscale (0.632)
— UnitBox (0.722) ~—— FastCNN (0.615)
0.2 Yan et al. (0.709) CCF (0.614)
— Zhang etal. (0.708) — NPDFace (0.609)
— HeadHunter (0.703) — Boosted Exemplar (0.600)
0.1 Hyperface (0.701) — SURF-multiview (0.569)
Barbu et al. (0.693) — PEP-Adapt (0.528)
LDCF+ (0.680)
0.0 L T T
0 200 400 600 800 1000

False positives
(b) Continuous ROC curves
Figure 6. Evaluation on the FDDB dataset.

5. Conclusion

Since effective models for the face detection task tend
to be computationally prohibitive, it is challenging for the
CPU devices to achieve real-time speed as well as maintain
high performance. In this work, we present a novel face
detector with superior performance on both speed and accu-
racy. The proposed method has a lightweight yet powerful
network structure, which consists of RDCL and MSCL.
The former enables FaceBoxes to achieve real-time speed,
and the latter aims at enriching receptive fields and dis-
cretizing anchors over different layers to handle faces of
various scales. Besides, a new anchor densification strategy
is proposed to improve the recall rate of small faces. The
experiments demonstrate that our contributions lead Face-
Boxes to the state-of-the-art performance on the common
face detection benchmarks. The proposed detector is very
fast, achieving 20 FPS for VGA-resolution images on CPU
and can be accelerated to 125 FPS on GPU.

(a) AFW

(b) PASCAL face

(c) FDDB
Figure 7. Qualitative results on face detection benchmark datasets.

Acknowledgments

This work was supported by the National Key Research
and Development Plan (Grant No.2016YFC0801002), the
Chinese National Natural Science Foundation Projects
#61473291, #61502491, #61572501, F#61572536,
#61672521 and AuthenMetric R&D Funds.

References

[1] A. Barbu, N. Lay, and G. Gramajo. Face detection with a 3d
model. arXiv:1404.3596, 2014. 6
[2] L. Bourdev and J. Brandt. Robust object detection via soft
cascade. In CVPR, 2005. 2
[3] S. C. Brubaker, J. Wu, J. Sun, M. D. Mullin, and J. M. Rehg.
On the design of cascades of boosted ensembles for face
detection. IJCV, 2008. 2
[4] D.Chen, G. Hua, F. Wen, and J. Sun. Supervised transformer
network for efficient face detection. In ECCV, 2016. 1, 2, 5,
6
[5] D. Chen, S. Ren, Y. Wei, X. Cao, and J. Sun. Joint cascade
face detection and alignment. In ECCV, 2014. 2
[6] S. S. Farfade, M. J. Saberian, and L.-J. Li. Multi-view
face detection using deep convolutional neural networks. In
ICMR, 2015. 2,6
[7] C. Garcia and M. Delakis. A neural architecture for fast and
robust face detection. In ICPR, 2002. 2
[8] G. Ghiasi and C. Fowlkes. Occlusion coherence: Detecting
and localizing occluded faces. arXiv:1506.08347,2015. 6
[9] A. G. Howard. Some improvements on deep convolutional
neural network based image classification. arXiv preprint
arXiv:1312.5402, 2013. 4
[10] V. Jain and E. G. Learned-Miller. Fddb: A benchmark for
face detection in unconstrained settings. UMass Ambherst
Technical Report, 2010. 6
[11] Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling
for large-scale boosting. In BMVC, 2008. 6
[12] M. Kim, S. Kumar, V. Pavlovic, and H. Rowley. Face
tracking and recognition with visual constraints in real-world
videos. In CVPR, 2008. 1
[13] V. Kumar, A. Namboodiri, and C. Jawahar. Visual phrases
for exemplar face detection. In ICCV, 2015. 6
[14] H. Li, G. Hua, Z. Lin, J. Brandt, and J. Yang. Probabilistic
elastic part model for unsupervised face detector adaptation.
In ICCV, 2013. 6
[15] H. Li, Z. Lin, J. Brandt, X. Shen, and G. Hua. Efficient
boosted exemplar-based face detection. In CVPR, 2014. 6
[16] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolu-
tional neural network cascade for face detection. In CVPR,
2015. 2,5
[17] J. Li and Y. Zhang. Learning surf cascade for fast and
accurate object detection. In CVPR, 2013. 6
[18] S.Z.Li, L. Zhu, Z. Zhang, A. Blake, H. Zhang, and H. Shum.
Statistical learning of multi-view face detection. In ECCV,
2002. 2
[19] Y.Li, B. Sun, T. Wu, and Y. Wang. Face detection with end-
to-end integration of a convnet and a 3d model. In ECCV,
2016. 2,6

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

S. Liao, A. K. Jain, and S. Z. Li. A fast and accurate
unconstrained face detector. PAMI, 2016. 2, 6

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg. Ssd: Single shot multibox detector. In
ECCV,2016. 2,3

M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool.
Face detection without bells and whistles. In ECCV, 2014. 6
E. Ohn-Bar and M. M. Trivedi. To boost or not to boost?
on the limits of boosted trees for object detection. In ICPR,
2016. 1,6

M. Osadchy, Y. L. Cun, and M. L. Miller. Synergistic face
detection and pose estimation with energy-based models.
JMLR, 2007. 2

M.-T. Pham and T.-J. Cham. Fast training and selection of
haar features using statistics in boosting-based face detec-
tion. In ICCV, 2007. 2

H. Qin, J. Yan, X. Li, and X. Hu. Joint training of cascaded
cnn for face detection. In CVPR, 2016. 2, 5

R. Ranjan, V. M. Patel, and R. Chellappa. A deep pyramid
deformable part model for face detection. In BTAS, 2015. 6
R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A
deep multi-task learning framework for face detection, land-
mark localization, pose estimation, and gender recognition.
arXiv:1603.01249, 2016. 6

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In
NIPS, 2015. 1, 2,5

H. A. Rowley, S. Baluja, and T. Kanade. Neural network-
based face detection. PAMI, 1998. 2

H. A. Rowley, S. Baluja, and T. Kanade. Rotation invariant
neural network-based face detection. In CVPR, 1998. 2

W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding
and improving convolutional neural networks via concate-
nated rectified linear units. In /CML, 2016. 3

X. Shen, Z. Lin, J. Brandt, and Y. Wu. Detecting and aligning
faces by image retrieval. In CVPR, 2013. 6

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015. 3

D. Triantafyllidou and A. Tefas. A fast deep convolutional
neural network for face detection in big visual data. In INNS
Conference on Big Data, 2016. 6

R. Vaillant, C. Monrocq, and Y. Le Cun. Original approach
for the localisation of objects in images. IEE Proceedings-
Vision, Image and Signal Processing, 1994. 2

P. Viola and M. J. Jones. Robust real-time face detection.
LJCV,2004. 1,2

J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable
part model for object detection. In CVPR, 2014. 2

J. Yan, X. Zhang, Z. Lei, and S. Z. Li. Face detection by
structural models. Image and Vision Computing, 2014. 2, 6
B. Yang, J. Yan, Z. Lei, and S. Z. Li. Aggregate channel
features for multi-view face detection. In IJCB, 2014. 2, 5
B. Yang, J. Yan, Z. Lei, and S. Z. Li. Convolutional channel
features. In ICCV, 2015. 1, 2

[42]

[43]
[44]

[45]

[46]

[47]

(48]

[49]

S. Yang, P. Luo, C.-C. Loy, and X. Tang. From facial parts
responses to face detection: A deep learning approach. In
ICCV,2015. 1,2,6

S. Yang, P. Luo, C. C. Loy, and X. Tang. Wider face: A face
detection benchmark. In CVPR, 2016. 4

J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang. Unitbox: An
advanced object detection network. In ACMMM, 2016. 2, 6
K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detec-
tion and alignment using multitask cascaded convolutional
networks. SPL, 2016. 2,5, 6

C. Zhu, Y. Zheng, K. Luu, and M. Savvides. Cms-rcnn:
contextual multi-scale region-based cnn for unconstrained
face detection. arXiv:1606.05413,2016. 1,2

X.Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment
across large poses: A 3d solution. In CVPR, 2016. 1

X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity
pose and expression normalization for face recognition in the
wild. In CVPR, 2015. 1

X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In CVPR, 2012. 2,6

